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Multi-scale modeling of cell survival and death mediated by p53 network: A Systems 

Pharmacology Framework 

Yuan Wanga, Zihu Guoa, Xuetong Chena, Wenjuan Zhanga, Aiping Lub and Yonghua Wang*a 

Abstract  The determination of cell fate is a key regulatory process for development of complex organisms that is 

controlled by distinct genes in mammalian cells. To interpret the decision process into a rigorous, analytical framework, we 

performed a multi-scale simulation of cell fate decision mediated by the p53 regulatory network in a systems 

pharmacology framework. The model treats fate determination as a gradual response to stress that delays the initiation of 

apoptosis to give the cell an opportunity to survive. The newly proposed two-factors model: DNA-p53 coupling explains 

the phenomenon of the existing biological responses to stress damage for p53 regulating network. In addition, the model 

also reveals the cell survival rate can be improved by lowering the p53 level in a feed-back network to increase its 

robustness for external stimuli. The present work not only deepens our understanding of cell fate determination, but also 

provides a theoretical basis for rational drug discovery and development.

Introduction 

In multicellular organisms, homeostasis is maintained through 

a balance between cell proliferation and cell death, which 

refers to the regulation of synthesis of molecules within the 

cell as well as the organization and function of cells and 

tissues.
1
 Cell survival and death appear when the homeostasis 

is disrupted, and the dysregulation play important roles in the 

pathogenesis of many complex diseases. The determination of 

cell fate has been investigated with both an experiment and 

mathematic model simulation, and is regulated by both cell-

intrinsic and cell-extrinsic factors. Although much is known 

about the lot number of proteins are shown a close 

relationship about the cell apoptosis, less is known about the 

mechanisms of cell death. So elucidation of the mechanisms of 

cell-fate determination and the search for chemopreventive 

agents are important and urgent tasks. 

The p53 protein is a major protein in the elucidation of cell 

fate through two aspects: the single-cell and multiple-cell 

levels. The gene expression dynamics and the natural 

oscillators of p53-Mdm2 have been obtained in response to 

DAN damage caused by gamma irradiation and a series of 

discrete pluses in identical cells.
2, 3

 However, the expression of 

other related-factors of p53 network (PTEN, p21, ARF, etc.) has 

not yet been shown, which are pivotal downstream targets of 

p53 regulatory network.  

Recently, a series of mathematical models have been 

proposed to explain the dynamics and kinetic processes of p53 

stress response network under certain treatment, either in cell 

population or in a single-cell, and most of which are 

deterministic model produced by ordinary differential 

equations (ODEs).
4-8

 These mathematical models of the 

dynamics of p53 signalling pathways make it possible to 

understand the decision of cell survival or death through 

systems-based dynamic analysis. Unfortunately, the existing 

modelling efforts have not explored sustained pulses as found 

on internal and external stress responses, respectively, and 

also have not explained why the survival and death can be 

observed for the same samples treated by the same 

conditions. 

In this study, we propose a multi-scale systems 

pharmacology-based framework to simulate the p53-

dependent cellular stress response in single-cell and multiple 

cell levels for cell fate determination, respectively. The model 

is consisted of three modules: a DNA damage repair module, 

an ataxia telangiectasia mutated (ATM) switch, and the p53 

network. The Cellular Potts Model (CPM) coupled with ODE is 

applied to investigate the stress response of p53 network in 

the cell-fate determination process. Based on the dynamic 

results, we attempt to establish a two-factors randomized 

mathematic model to explain the cell-fate determination. Our 

approaches and modelling results have provided valuable 

ideas to achieve the relationship between the monitoring of 

multidimensional (different conditions, times, and proteins) 

pathway dynamics and cell behaviour. 

Methods 

The model of p53 regulatory network 
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The model involves two repair ways of double-strand DNA 

breaks (DSBs), ATM, two-compartment kinetics of p53, its 

primary inhibitor Mdm2, phosphatase PTEN, PIP3, Akt kinase, 

p21, Myc, Mucin1, cdk2/cyclin E, Siah-1, beta-catenin, 

p19/14ARF and miR-145. The transcriptional activity of p53 is 

regulated by a complex network that involves all the 

mentioned molecules (Fig. 1), and the details are as following: 

1) In the cell nucleus, under the continuous effect of acute 

ionizing irradiation (IR), DSBs generate and trigger two major 

repair mechanisms: homologous recombination (HR) and non-

homologous end joining (NHEJ) (denoted DSBs).
9
 The DNA 

complex (DSBCs) formed by DSB and repair proteins Mre11, 

Rad50, and the repair process contains both the fast kinetics 

and the slow kinetics (denoted by DSBCs1 and DSBCs2, 

respectively), resulting in the fixed DSBs (denoted by Fixed 

DSB1 and Fixed DSB2, respectively).
5, 10

 Meanwhile, about 60–

80% of DSBs are rejoined quickly, whereas the remaining 20–

40% of DSBs are rejoined more slowly.
5, 11

 

2) DSBCs induces the activation of ATM, the rapid 

acetylation and intermolecular auto phosphorylation, causing 

the dimer to dissociate rapidly into the active monomers 

(denoted by ATMd, ATM and ATMa, respectively).
12, 13

 

3) The p53 protein is phosphorylated by ATM, the 

unphosphorylated proteins further undergo reversible 

phosphorylation (with unphosphorylated and phosphorylated 

p53 denoted by p53 and p53a, respectively), and degradation 

processes. At the same time, the activation of AKT is mediated 

through ATM in vivo.
14

 

4) The p53 protein activates transcription of the murine 

double minute gene (denoted DNA-Mdm2), which transcripts 

(denoted by mRNA-MDM2), translates to Mdm2 protein. The 

unphosphorylated proteins further undergo reversible 

phosphorylation, and degradation processes. In the cytoplasm, 

the Mdm2 protein can target p53 for its degradation.
2
 

5) The p53 protein induces the transcription of the PTEN 

gene (denoted DNA-PTEN), coding PTEN protein (denoted 

PTEN), which acts as a phosphatase for PIP3 protein, and the 

phosphorylated proteins further undergo reversible 

dephosphorylation (with unphosphorylated and 

phosphorylated PIP3 denoted by PIP2 and PIP3, respectively), 

and degradation processes. The PIP3 protein regulates the 

phosphates of AKT protein, and the phosphorylated proteins 

further undergo reversible dephosphorylation (with 

unphosphorylated and phosphorylated AKT denoted by Akt 

and Akta, respectively), and degradation processes. The AKT 

protein mediates the phosphorylation of Mdm2 protein.
15-17

 

6) The p21 protein (denoted p21), encoded by the 

WAF1/CIP1 gene (denoted WAF1/CIP1), can be transcript-

activated by p53 protein,
18

 and undergoes degradation 

processes. Meanwhile, the transcription is mediates by ARF 

protein
19

 and Myc protein.
20

 p21 protein can bind to 

cdk2/cyclin E (with unphosphorylated and phosphorylated 

cdk2/cyclin E denoted by Cyclin E/cdk2 and Cyclin E/cdk2a, 

respectively) and inhibits its function.
21

 

7) The Siah-1 protein (denoted Siah-1), encoded by the 

SIAH1 gene (denoted SIAH1), can be transcript-activated by 

p53 protein,
22

 and undergoes degradation processes. At same 

time, it mediates beta-catenin protein (denoted Beta-Catenin) 

degradation,
23

 as p53 protein.
24

 

8) The p19/14ARF (denoted P19/14ARF), encoded by the 

INK4a-ARF gene (denoted INK4a-ARF), is mediated by p53 in 

the transcript process, and can interact directly with p53, in 

turn mediate the transcription of p21 and inhibits the Mdm2 

ubiquitin ligase.
19, 25

 

9) The model also incorporates the functions of miR-145, 

which can be transcriptionally induced by p53,
26

 i.e., miR-145 

inhibits the activation of AKT protein,
27

 and plays the roles in 

the posttranscriptional regulation of c-Myc and Mucin1 

proteins (denoted mMyc and Myc, mMucin 1 and Mucin 1, 

respectively).
26, 28

 At same time, c-Myc and Mucin1 also induce 

transcription of the ARF,
29, 30

 and Mucin1 increases beta-

catenin levels in the cytoplasm,
31

 c-Myc can influence the 

outcome of p21.
20

 

In summary, this model displays the regulatory network of 

p53 response on the damage of DNA, which is combined with 

positive and negative feedback loops, is co-activation of 11 

proteins and miR-145. The detailed pathway is shown in Fig. 1. 

The detailed network model incorporates Hill-type, Michaelis-

Menten and mass action kinetic, which are the mathematical 

models that explain and predict the behaviours of molecules in 

governed by a system of kinetic Equations (S1)-(S36) 

(Supplementary Methods), and the parameter values are 

shown in Supplementary Table S2. 

 

Dynamic sensitivity analysis 

In this work, a dynamic sensitivity analysis is used to study the time-

varying sensitivities in the biological systems and individual 

parameters are varied and the effects of such variation on the 

output of the system are evaluated.32, 33 The steady-state 

concentration fluxes of reactions were defined as system output. In 

our model, the sensitivity coefficient is calculated as 

Y
S

Xi

∂
=
∂

                                                  (1) 

where S is the sensitivity index of the state variable Y 

(representing the model output) to the parameter Xi. The 

results are normalized to obtain the scaled sensitivity 

coefficients S' that is dimensionless. 

 

A two-factors model of cell fate determination 

In this section we attempt to propose a two-factors model to 

explain the existence of apoptosis rate, as a measure of cell-

fate determination of the cell population. 

In p53-related apoptosis experiments, the concentration of 

p53 protein and the cell damage level are both relative to 

apoptosis. So we use X(t) to express the possibility of apoptosis 
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induced by factors at time t, and set the level of X(t) is 

proportional to the number of p53 protein ([p53](t)) and the 

intact DSB numbers ([DSB](t)) (denoted by P and M, 

respectively), X as Eqs. (2)-(3) describe: 

X P∝                                                                     (2) 

X M∝                                                                    (3) 

then we assume the relationship can be described as 

following: 

                              ( )X t k P M= × ×                                                     (4) 

here, 

                              [p53a](t)P =                                                             (5) 

                              [ ](t)M DSB=                                                          (6) 

therefore, substituting P and M into Eqs. (4), we obtain 

                             ( ) [ 53 ]( ) [ ]( )X t k p a t DSB t= × ×                                  (7) 

then, X(t) should carry out linear function conversion 

normalization, the equation is: 

                            ( ) ( )y= x-MinValue MaxValue-MinValue               (8) 

x is X(t), y is the normalized X(t), MaxValue is the maxlmum 

value, MinValue is the minimum value. The normalized X(t) are 

all in [0,1]. 

The cell mutation rate at time t is marked as R(t), so 

{ }( ),  0  R t t≥  is a stochastic process, where R(t)=ΑX(t)  and 

A~U[0,1]. 

 

The Glazier-Graner-Hogeweg or GGH Model 

In order to validate the experimental data obtained in the 

study of single and multicellular for p53, we use mathematical 

approaches with the GGH model, also known as the CPM,
34, 35

 

which uses the spatially extended domains on a fixed lattice, 

usually 3D Cartesian lattice or 3D hexagonal lattice to 

represent cells, and the dynamics of cells is described by 

effective energy formalism and implemented as a Monte Carlo 

algorithm. For each pixel copy attempt, the change in the 

overall system effective energy ΔH and accept the attempted 

pixel reassignment with probability P(ΔH): 

                  
( )

∆H

kT∆H = e ∆H > 0

1 ∆H < 0

P

  −   



                                        

(10) 

here ΔH shows the difference in effective energy produced by 

the change, k is a converting constant, and T represents a 

parameter corresponding to the amplitude of cell fluctuations. 

The effective energy, also called the Hamiltonian and 

denoted by either H or E, is the core of the GGH model. The 

Hamiltonian is typically expressed as a sum of terms, each 

term representing different cellular behaviors, interactions, 

mechanics, etc. The effective energy mixes true energies such 

as cell-cell adhesion with terms that mimic energies. In our 

simulations we have used Hamiltonian containing contact 

energy, and two terms implementing constraints on cell 

shapes (volume and surface). 

 

2 2(1- ) ( - ) ( - )( ), ( ) 1 2 1 2
1, 2

1 2

H J S S V Vi j s vσ γ γτ τ δ δ
τ τ
= + +∑

      (11) 

The first term describes the contact energy between cells, 

and their environment, i and j represent the cell ID, Jτ1,τ2 

represents the adhesive energy per unit area between type 

τ1and type τ2, γs and γv are related to surface and volume 

elasticity, respectively. σ expresses the Kromeke-σ-function, S1 

and S2 denote the current surface and the target surface, V1 

and V2 express the current volume and the target volume, 

respectively. 

 

Algorithm Implementation 

To simulate apoptosis behavior related with p53 network 

inside individual cells vary over time, we write functions in our 

CC3D-Bionetsolver code to record values to output files of all 

concentrations each Monte Carlo Step (MCS), and perform the 

simulation by CompuCell3D (http://www.compucell3D.org)
36

 

on a domain or a lattices of 100×100×1 pixels in x, y, and z 

directions, respectively, with the z-axis being perpendicular to 

the page. All cells are individually created in the shape of a 

cube of size 10×10×1 pixels, without gaps between them and 

each cells were regulated by mentioned network. In the 

lattice, we place a sheet of cells with 10 cells along x-axis, 10 

cells along the y-axis, and 1 cell along the z-axis. A scale of 1 

pixel equal to 1 μm was used. Therefore one cell has a volume 

of about 100 μm
3
. The initial configuration is one single cell 

surrounded by a number of similar cell. The cells in our model 

are nonpolar, with the exception of Source cells, and have a 

constant volume and do not divide or growth, and hence cell 

fate is driven by the p53 regulate network dynamics. The 

determination of cell fate is expressed only by the probability 

that a given cell will or will not change color. 

To simulate the determination of cell fate we introduce two 

types cell (apoptotic cell and non-apoptotic cell). A cell type 

denotes a collection of model cells that share a unique set of 

properties, interactions and dynamics. The cell types result 

from cell state in which some genes turn on or activate and 

other genes turn off or inactivate. As a result, different cell 

types represent different behaviors. In the CPM, all cells of a 

particular differentiation type share a set of parameters 

describing their behaviors and properties. All CPM models use 

MCS as a unit of time, and each MCS consists of number of 

pixel copy attempts equal to total number of lattice sites. The 

conversion between pixel and physical distance (or MCS and 

physical time) depends on model parameters. In our 

simulations 1 MCS corresponds to 1 min of real time and the 

parameters in the multi-scale model are scaled accordingly. 

Results and discussion 

Dynamics of p53 network for internal stresses 
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The nonuniform distribution of dislocations in proteins and 

other organic and bioorganic molecules gives rise to internal 

stresses that determine cell response. The mechanical 

response of p53 regulatory network is essential for survival in 

a stressful intracellular environment. Different cells might face 

different internal stresses. Therefore, we focus on the dynamic 

behaviors of p53 regulatory network in cells with changeable 

internal stresses in this section. 

The p53 network that we consider in this work is shown 

schematically in Fig. 1. We separately obtain its overall 

qualitative dynamic behavior by analyzing its bifurcation 

diagram, which is relatively independent of the model 

parameters (shown in Supplementary Table S2). In this 

network, ATMa can be as one representative of stress 

integrators. So the dynamic behaviors of p53 network under 

changeable internal stress can be simulated by the increased 

fixed levels of activated ATM protein, and the results are 

shown in Fig. 2. 

Among the predictions of the model is that increasing levels 

of the fixed concentrations of ATMa or stress level drives the 

periodic change of the dynamic behavior of activated p53 

protein: straight line, one pulse wave, damped oscillations, 

oscillation, damped oscillations, one pulse wave and 

logarithmic graph in stages, respectively (Fig. 2A). Ultimately, 

however, only two steady state forms: fixed and oscillation of 

concentration appear in all types of cell internal stresses. 

Interestingly, while the onset of oscillation requires a sufficient 

amount of ATM, an excessive total amount of ATM annihilates 

p53 oscillation, quite similar with the simulation results.
5
 

At intermediate levels of internal stress cell, the 

concentration of activated p53 undergoes oscillation, while 

undergoes more pulses followed by basal levels in low-steady-

state and high-steady-state. We postulate that in between two 

line-steady-state levels associated with low internal stress and 

high internal stress, there exists a range of activated p53 levels 

with oscillate state. We call this range the transforming zone. 

Furthermore, the concentration of p53a grows with the 

number of ATMa level or internal stress level in general, and 

the faster activated p53 grows, the higher internal stress level 

(Fig. 2B and C). This means the number of concentration of 

activated p53 is lower in lower-internal-stress normal cell than 

higher-internal-stress diseased or cancer cell.  

Dynamic analysis of the p53 regulation shows a bifurcation 

diagram of activated p53 concentration as a function of stress 

level (Fig. 2C). With increasing stress level, the activated p53 

protein undergoes transitions form low steady state to 

oscillation to high steady state. Oscillations appear at the 

intermediate levels of stress level, with a period about 250 

min; a high steady state appears at higher stress level. These 

results are consistent with existing experimental observations 

and theoretical modeling.
2, 37, 38

 Moreover, the first pulse is 

slightly higher than the second, quite similar as the 

experimental observations
2
 and the simulation results.

5, 6
 

The existence of the transforming zone increases with 

internal stress level, the cell always passes through the entire 

oscillation phases. Because there are molecular interactions 

among p53a and other molecules, here we consider a system 

with ATMa = 1.73 as a representative to illustrate this (Fig. 2D). 

The simulation shows that the regulatory system is robust in 

the transforming zone. Fig. 2D illustrates the traces of 

oscillations between p53a and Mdm2a with the same 

frequency and different swing (details of other molecules are 

shown in Supplementary Fig. S1). In the transforming zone (the 

equilibrium state), the system undergoes oscillations with less 

frequency along with the increasing internal stress levels (Fig. 

2E). It is shown that p53a and Mdm2a responses by cyclic 

behavior way in individual cells (Fig. 2F), which is supported by 

previous work.
2
 This illustrates the significant concentration 

differences between p53a and Mdm2a to keep robustness 

against the internal stress. 

Dynamic analysis of the p53 regulation module reveals the 

dynamic behavior of p53a protein undergoes transitions from 

low steady state to oscillation, and to a higher steady state, 

with increasing cell stress levels. Oscillations appear at the 

intermediate levels of cell stress. A high steady state appears 

at higher cell stress level. These results are consistent with 

experimental observations and theoretical modeling.
5, 37

 Fig. 

6B demonstrates the extraordinary regularity and long-term 

stability of the oscillations at ATMa = 1, 1.73 and 2.5. When 

ATMa is increased, p53a is increased, and the limit cycles, 

formed by p53a and its major negative factor-Mdm2a, are 

shown in Fig. 6C. The result shows the higher ATMa levels, the 

lager distribution of cyclic fitness. 

 

Dynamics of p53 network for external stress 

Here, we illustrate how these systems responds to different 

levels of external stress. That is, we find three subjects, two in 

the treated groups (short-time one and continuous one) and 

one in the control group. Through the first 2000 min 

simulation, each system is at steady states as shown in Fig. 2 

(see the gray area in Fig. 3). Upon external stress, a different 

number of pulses response to short-time group, while the 

oscillation and logistic-like up-regulation response for p53 

network to continuous external stress. 

For short-time group, IR = 5 Gy for 20 min, as a 

representative, the levels of p53a are sharply increase 

immediately, and then undergo certain pulses followed by 

their original levels after removing IR (see the red dash-dot 

lines in Fig. 3). For the internal stress lower than the 

transforming zone system, the higher intrinsic stress, the more 

pluses undergo and longer time used to return their original 

levels for same external stress (Fig. 3A to C). For the higher 

system, only one concentration pluses of p53a is used to 

response the short-time treatment, and return the originals 

levels at 3000 min almost after remove IR (Fig. 3E to G). 

Meanwhile, in the transforming zone, the period of oscillation 

is delayed, with same frequency and amplitude after tiny up-

regulation some time (Fig. 3D). 

These simulations suggest that, for short-time external 

stress, the robustness leads to return the original cells' states, 
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ultimately. On the lower internal stress system, the higher 

internal stress would make the robustness weaken, and 

displaying the weakening ability to adapt to changed 

circumstances. While facing higher stress, the system loses the 

ability to fit for changes on damped oscillatory response, 

which is the major response form for lower system. During the 

range of transforming zone, the period of cell is delayed but 

the state of cell is no change. 

To obtain deep insights into the mechanisms of different 

responses for all kinds of cells under continuous external 

stress, we consider the DNA damage level in the system with 5 

Gy to simulate, where it is used in experiment to study how 

p53 performs its function as a nuclear transcription factor, 

regulating the expression of target gene in response to DNA 

damage.
39, 40

 The results are shown in Fig. 3 with green dash-

dot lines. Notably, there are three kinds of response for seven 

levels system under continuous 5 Gy treatment, such as 

oscillation, damped oscillation and logistic-like up-regulation, 

with the increased internal stress system. This means the 

network responses to external stress in an oscillation way in 

the lower internal system while a damped oscillation way in 

the transforming zone system, but losing its robustness on 

higher internal stress. 

It is noteworthy that two kinds of steady state levels are 

observed similarly with the internal stress: stationary level and 

oscillation level. Compared with control group, the fluctuating 

form is the major way to response external stress. This can 

explain why p53 is oncogen and tumor suppressor gene, as 

p53 induces growth arrest through control on a lower level in 

cell, while initiates apoptosis on a higher level due to loss of 

robustness for the system. 

It is noteworthy that these results are anastomotic with 

experiment results:
2
 1) Different cells from the same clone in 

the same field of view showed different numbers of 

oscillations, with cells showing either zero, one or two pulses 

(some cells began a third pulse towards the end of the 

movies). The low steady state simulation results get this result 

similar (Fig. 3E G F and D). 2) The width of each pulse in our 

model are almost 300 min accorded with the experimental 

area 350 ± 160 min (mean ± s.d.). 3) Pulse heights varied by 

approximately threefold between cells (see the blue and 

magenta line in Fig. 1A).  

The simulation shows that more highly robust ability in 

lower stress level system, while lost the ability in high steady 

state system. These provide an evidence-based window to 

explain the seemingly contrary mechanisms of p53 protein: 

arrest growth by holding the cell cycle at the G1/S regulation 

point on DNA damage recognition (if it holds the cell here for 

long enough, the DNA repair proteins will have time to fix the 

damage and the cell will be allowed to continue the cell cycle), 

and initiate apoptosis-programmed cell death - if DNA damage 

proves to be irreparable. Hence, we have successfully put 

forward a model, which can predict the p53-related network 

behavior under a constant confinement pressure. 

 

Dynamic sensitivity analysis of p53 networks 

In order to understand the dynamic properties of the system 

with changes in parameters, and found which parameters are 

more important in the system. We performed a sensitivity 

analysis and the results are shown in Supplementary Fig. S2. A 

positive value of S (scaled sensitivity values) indicates an 

increase, and a negative value indicates a decrease in the 

system output upon the changes of the respective parameter. 

The scaled sensitivity absolute value |S|>1 suggests that 

changes in reaction rate may have an amplified effect on the 

reaction output. Here a total of 12510 (139 parameters×90 

reactions) local sensitivities for the network were calculated 

and obtained 82 |S| values for 47 parameters and 23 reactions 

>1 (Fig. 4).  

It is found Jcf has the largest impact on the whole pathway, 

affecting 5 out of a total of 23 reactions with |S|> 1 and 11 out 

of all reactions with |S|> 0.75. About the most important 

element p53, 39 |S| >1, for 28 parameters and 8 reactions. 

Another major element Mdm2 also shows 19 |S| for 19 

parameters and 6 reactions >1. These observations explain 

why the two core proteins Mdm2 and p53 very important in 

the whole network. Meanwhile, the reactions miR-145 

formation by p53a shows 8 |S|>1, for kfg, kcf, Jcf, δf, kah, ni, σi, 

kct and Jct, which are the paraments for the mRNA-Mdm2 

translation reaction, the mRNA-Mdm2 translation by p53a 

reaction, the mMdm2 degradation reaction, the Mdm2a 

degradation by ATMa reaction, etc. these results shows the 

element miR-145 can be regualted by p53, and feed-back 

regulat p53 through element Mdm2. 

 

Kinetic parameter effects 

Here, in order to further investigate the dynamic effects of 

kinetic parameters between two core protein p53a and 

Mdm2a, the rate constant (Jcf) was increased or decreased by 

20% compared with the ‘basal’ value of Jcf =1, shown in Fig. 5A 

and B. The oscillations show with the same frequencies for 

mMdm2, Mdm2a and p53a, indicating the robustness of the 

network. Once Jcf is downregulated by 20%, mMdm2 is also down-

regulated but an up-regulation of Mdm2a appeared simultaneously. 

In addition, we have also tested the sensitivity of the 

incomplete network without the p21 (Fig. S3). We found only 

76 |S| values for 23 reactions >1. Comparing to the results of 

Fig.4, only 9 scaled |S| values for 10 parameters (Jcf, kad, δf, σd, 

keg, ked, kwu, δi, σj and kjk have changed, with 6 scaled |S| 

values significantly up-regulated, and 3 scaled |S| significantly 

down-regulated, but others remains unchanged. The ckd2a 

degradation reaction is the most obvious down-regulated 

reaction and the Mdm2 phosphorylation by cdk2a is the 

second one, that shows the p21 regulate the netword mainly 

through cdk2a and Mdm2. 

 

Cell fate determination by two factors: p53 and DNA damage 
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Exposure to cellular stress can trigger the p53 tumor 

suppressor to induce cell growth arrest or apoptosis. In 

response to DNA damage, p53 can be a strong inducer of 

apoptosis. This function is dependent on the cell type as well 

as type and extent of the DNA damaging agent. The 

intracellular activated p53 level has been shown to exhibit a 

series of pulses after DNA damage caused by ionizing 

radiation.
41, 42

 So, Zhang et al. demonstrate that cell fate is 

determined by the number of p53 pulses relying on the extent 

of DNA damage. That means the cell fate has relationship with 

DNA damage, and the extent of external stress can change the 

cell fate through p53 network. 

What is noteworthy is that the active p53 protein in 1.73 

system (green line in Fig. 3D) changes the oscillation behavior 

to damped oscillation under short-term treatment, like the 

dynamic waves in 3.47 system without treatment group (blue 

line in Fig. 3E). That says only p53 protein level cannot 

determine cell fate in earlier model calculations. Therefore, we 

constructed a two-factors model to reveal the relationship 

among p53 protein, cell damage and cell fate (see more details 

in Method section). 

The existence of apoptosis rate in the molecular biological 

functional studies means partial cell still remain their original 

states even after certain treatment. That is, the responses of 

p53 regulate network for identical external stress are different, 

some are survival, while others apoptosis. Our two-factors 

model show a reasonable way to explaining these 

phenomenon. 

Based on the simulation of p53 regulatory network, the 

representation of results, evaluated according to equation (1)-

(9), show the dynamic behavior of apoptosis rate - Xt in seven 

systems (Fig. 6).  

For short-term stimulation, the level of Xt quickly rises to its 

maximum and down-regulates after remove the treatment, 

eventually arrive at zero, and then finish the response of the 

damage (left of Fig. 6A). The normalized results show the same 

trend (left of Fig. 6B). More normalized results for short-term 

stimulation are shown in Fig. 64 (A, C and E). These results 

indicate cell occur apoptosis easier at early state after 

removing the damage treatment. 

However, the level of Xt in continuous stimulation 

simulation rise in the oscillation way in low steady state 

system and oscillation system (see the red, green, blue and 

magenta line on right of Fig. 6A), while on the logistic-like up-

regulation way in high steady state system (see the cyan, dark-

green and brown line on right of Fig. 6A). The normalized 

results show the same trend (right of Fig. 6B), with short-term 

stimulation in Fig. S4 (B, D and F). It is demonstrated that cell 

apoptosis rate has oscillation-like behavior in low steady state 

system and oscillation system, while losing the ability of 

oscillation-like regulation under this treatment. 

 

Multi-scale modeling of the two factors model 

In this section, we study the growth and evolution of cell mass 

that consists of the apoptosis response of normal cells with 

varying spatial protein level and damage degree in order to 

understand the apoptosis effect and mechanism, using 

mathematical approaches with the GGH model coupled with 

ODEs (see more details in Method section), and the results are 

shown in Fig. 7. 

All the simulation begin with 100 normal cell at the center of 

the domain. This initial cell divides repeatedly following the 

ODEs governing the dynamic behavior and eventually induces 

cell apoptosis. Following the CPM methodology we measure 

time in units of MCS. In our model a single MCS corresponds to 

1 min of real time. At each MCS, all the cells are checked for 

the apoptosis rate levels and their phases are updated. 

Calculated Xt, the apoptosis marked by blue colorcell, while 

the un-apoptosis cell showed by green color. Fig. 7 shows the 

spatial distribution of the cells and Xt level at two different 

groups time points to show the cell fate under two kinds 

treatments.  

For short-term stimulation (5 Gy 20 min) (Fig. 7A), about 13 

percentage cell apoptosis, and almost 90 percentage occurs in 

the first 10 MCS (the raw data show on Table S3). Fig. 7C 

shows the number of apoptosis cell at various time points. 

Based on results of twenty times simulations, the two-factors 

model is proved steady. This means a positive correlation 

between the number of apoptosis cell and the level of Xt. The 

continuous stimulation (Fig. 7B) shows that almost 90% cell 

apoptosis appears at 32 MCS. That is say that the vast majority 

of cell are death under continuous stimulation for half an hour 

(for example, IR). It provides direct evidence of the 

necessariness of longer than 30 min in ultraviolet disinfection. 

We also select an oscillation system (ATMa = 1.73) to 

simulate the two groups (Fig. S5). Compared with the two 

systems, the more the apoptosis cell, the higher internal 

stress, under same simulations (Fig. 8). It is suggested that it is 

easier to induce cell death on higher cell stress, which is 

consistent with experiment: at the higher dose of 7.5 Gy, the 

surviving fraction was low in both T47D/BP-3 and T47D/VEC.
43

 

For normal cells, it is important to keep robust response for 

stresses. This ability can effectively decrease the change of 

protein level in cellular signal response, and finally increase 

chances for survival. Fig. 9 show the simulation results 

between the normal network and the incomplete network, 

where the feed-back loop regulation of the core protein p53 

by Mdm2a is blocked (the parameter khb and khc are changed 

to zero). When losing the ability of robust response, the level 

of p53 protein can be double or three times higher (at the left 

of Fig. 9A), the level of Xt raised two times for short-term 

stimulation and nine times for continuous stimulation, 

respectively. The apoptosis rate shows an obvious increase 

from 13±2.6% to 77.8±3.8% in short-term simulation. 

However, in a continuous stimulation, the apoptosis time is 

definitely decreased as shown in Fig. S6a and b. These results 

indicate that a network-regulation might offer an available 

way to return the disordered cell to a normal state. 

Page 6 of 15Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
2 

A
ug

us
t 2

01
5.

 D
ow

nl
oa

de
d 

by
 N

or
th

w
es

t A
gr

ic
ul

tu
re

 a
nd

 F
or

es
tr

y 
U

ni
ve

rs
ity

 o
n 

13
/0

8/
20

15
 0

1:
45

:3
4.

 

View Article Online
DOI: 10.1039/C5MB00304K

http://dx.doi.org/10.1039/c5mb00304k


Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 2015 J. Name., 2015, 15, 1-3 | 7  

Please do not adjust margins 

Please do not adjust margins 

Conclusions 

To deeply inspect the mechanism of cell fate determination, 

we show a muti-scale mathematical model of p53 regulatory 

network. The major goal is to investigate the dynamics of 

protein signaling pathways and cell stress response process. 

The model is composed of four main sub-network: 1) a cell 

stress damage repair module; 2) a signal transduction ATM 

switch; 3) the p53 regulatory network; 4) a cell-fate 

determination model for apoptosis. We predict three main 

states: the low steady state, oscillation and high steady state 

of the signal response for the p53 network. We also propose a 

two-factors model to explain the decision of cell survival and 

death. The simulations also suggest that the robust response 

of the p53 network to response the internal or external cell 

stress. This work not only deepens our understanding of cell 

fate determination, but also provides a theoretical basis for 

rational drug discovery and development. 
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Fig. 1 The model of p53 regulatory network 

In this model, a rectangle represents a state for the concentration of mRNA, DNA or protein of 

one element, and the name suffixed by “a” represents the active form for the state of one element. 

The arrow represents the rate of different biochemical reaction, such as transcription, translation, 

phosphorylation, dephosphorylation or degradation. The arrow or hammerhead, which connects 

two tectangles of different elements, represents the rate of activate or inhibit reaction between two 

elements. The circle with “de” represents the degradation of one element. Abbreviations used: 

mMdm2, mRNA of Mdm2; mp53, mRNA of p53; mMyc, mRNA of Myc; mMucin1, Mucin1. 
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Fig. 2 The dynamic behavior of p53 protein in systems 

(A) The kinetics of activated p53 protein under the increased stress levels. In special range of 

ATMa level, activated p53 protein shows the similarity dynamic behavior. (B) The kinetics of 

activated p53 protein under the middle level of each stress range. (C) The phase diagram of the 

activated p53 as a function of the DNA damage level (blue line). In the central region where 

activated p53 oscillates, the upper and lower branches denote the peak and valley values of the 

oscillation, respectively. (D) The time courses of the activated p53 (red) and activated Mdm2 

(green) in transforming zone (ATMa = 1.73). (E) The time courses of the activated p53 at different 

levels in transforming zone (ATMa = 1, red; 1.73, green and 2.5, blue). (F) The relationship 

between the time courses of the activated p53 and the activated Mdm2 at same three levels with B. 
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Fig. 3 Whole-model simulation results 

After the first 2000 min simulation, the system is at steady state. Between time 2000 min and 4000 

min, the control system undergoes changeable extrinsic stress. The red and the green dash-dot line 

represent short-time and continuous extrinsic stress, respectively, which is represented by 5 Gy IR 

for 20 min and continuous 5 Gy IR. The blue dash-dot line is the control group without any 

extrinsic stress. (A) to (G) represent the responses of the seven mentioned internal stresses cell 

under above three kinds treatments, represented by the value of ATMa is 0, 0.17, 0.43, 1.73, 3.47, 

4.75, 6, respectively. 
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Fig. 4 The heat map of 82 scaled |S| values for 47 parameters with 23 reactions >1. 

X axis represents a parameter with Y axis for a reaction flux. 

 

 

Fig. 5 Impact of the Jcf on mMdm2, Mdm2a and p53a dynamics in the whole network. 

(A) p53a, mMdm2 and Mdm2a change with different Jcf values, by down 20%, bacal and up 20%, 

respectively. (B) The simulations of p53a, mMdm2 and Mdm2a are performed by three Jcf values 

of 0.8, 1 and 1.2. 

 

 

Fig. 6 The dynamics of apoptosis rate-Xt in the above mentioned systems. 

(A) The level of Xt in seven systems under short-term (left) and continuous stimulation (right) are 

represented by red, green, blue, magenta, cyan, dark-green and brown line, respectively. (B) Red, 

magenta and cyan lines signify the normalized Xt in low steady state, oscillation and high steady 

state with two treatments (left: short-term stimulation and right: continuous stimulation), here, the 

MinValue is 0 and MaxValue is 1500. 
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Fig. 7 Plots showing snapshots of a sequence of the computation simulation results of the 

model at various time points. 

(A) and (B) denote the plots of the spatial evolution of cell fate in low steady state (e.g., 0 system) 

under short-term and continuous stimulation, respectively. Colours of the cells correspond to state 

of cell, green and blue represent cell survival and apoptosis, respectively. Plots of Xt levels for the 

simulation in which cells undergo special treatments. (C) The computation simulation results the 

number of apoptosis cell at various time points after short-term stimulation in aforementioned one 

of the low steady state 0 system. All simulations were performed twenty times. 
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Fig. 8 Plots showing the results of a simulation of cell fate determine. 

(A) and (C) denote in low steady state (e.g., 0 system) and oscillation state undergo short-term 

stimulation, while (B) and (D) undergo continuous stimulation. Plots of Xt levels for the 

simulation in which cells undergo special treatments. 
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Fig. 9 Plots showing the results of a simulation of cell fate determine. 

 (A) the dynamic curves of p53 protein and Xt The red and blue line represents the normal system 

in short-term and continuous simulate, respectively, and the green and magenta line represents the 

incompletely system, respectively. (B) the snapshots of a sequence of the computation simulation 

results of two kinds system at special time points, (a) and (c) are the results of short-term group in 

two systems, and (b), (d) and (e) are the results of continuous group. Here the MaxValue is 1500 

and 8000 in (d) and (e), respectively. 
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