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Abstract The term systems pharmacology describes a
field of study that uses computational and experimental
approaches to broaden the view of drug actions rooted in
molecular interactions and advance the process of drug dis-
covery. The aim of this work is to stick out the role that
the systems pharmacology plays across the multi-target drug
discovery from natural products for cardiovascular diseases
(CVDs). Firstly, based on network pharmacology meth-
ods, we reconstructed the drug–target and target–target net-
works to determine the putative protein target set of multi-
target drugs for CVDs treatment. Secondly, we reintegrated
a compound dataset of natural products and then obtained a
multi-target compounds subset by virtual-screening process.
Thirdly, a drug-likeness evaluation was applied to find the
ADME-favorable compounds in this subset. Finally, we con-
ducted in vitro experiments to evaluate the reliability of the
selected chemicals and targets. We found that four of the
five randomly selected natural molecules can effectively act
on the target set for CVDs, indicating the reasonability of
our systems-based method. This strategy may serve as a new
model for multi-target drug discovery of complex diseases.
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Introduction

Although most new drugs often fail in Phase II and Phase III
trials, they are usually promising in cell-based assay. Nowa-
days, developing drugs through classical empirical methods
is not proven to be productive. There is an urgent need of
new guidelines to decrease the high drug attrition rates in
changing the current unsatisfactory drug discovery model.
Polypharmacology describes an innovative area in drug dis-
covery that integrates the concept of systems biology and
pharmacology, which expedites drug discovery by systems
modeling among human diseases, biology, and chemistry.
Therapeutic polypharmacology derives from two aspects: (1)
an effective drug modulates multiple targets, and (2) several
drugs bind to one protein molecule, leading to activating mul-
tiple pathways, such as signaling and functional pathways
[1].

Multi-target drugs (MTDs) are believed to be promiscu-
ous and might affect the entire cellular networks equilibrium
more than single-targeted drugs, resulting in fully correct-
ing complex disease conditions such as cancer [2]. There are
many marketed drugs labeled as MTDs by FDA. Although
some of them were purposefully synthesized, the majority of
them were randomly discovered. Presently, the development
of polypharmacology faces two challenges: identifying a tar-
get or combination of targets in a biological system whose
perturbation results in an expected curative effect, and dis-
covering multi-target agents with the desired polypharma-
cology profile to perturb those targets.
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How should we find the relevant target-sets of MTDs?
Systems biology is likely to expand the druggable genome
to benefit polypharmacology through a comprehensive per-
spective on disease and drug-action mechanisms. Systems
analysis methods provide computational assistance for phar-
macologists in identifying the efficacy rooted in the com-
prehensive drugs-targets interactions exposing to the whole
cellular network [3–6]. How could we find the clinically rel-
evant target-combinations? Markedly, platforms are moving
right into generating reliable data to accelerate drug develop-
ment. However, the problem is limited due the difficulty of
integrating data and performing dynamic simulation between
two states [7]. Hence, many promising tools might be use-
ful to estimate the matching probability between our present
knowledge and the cell complexity in pathological statuses
such as systems pharmacology. Systems pharmacology aims
at decoding the mechanisms of drug actions by integrating
systems biology, pharmacokinetics, and pharmacodynamics
methods [8–14]. As a major constituent part of systems phar-
macology, network provides the framework to explore pos-
sible knock-on and knock-out effects interfering with the
target and decides whether a target is worth pursuing or
not.

As we know, herbal medicine, featured as multiple com-
ponents and multiple targets, has shown a tremendous
promise both for clinical practices and drug discovery. Con-
temporarily, accompany with the development of combi-
natorial chemistry and high-throughput screening (HTS)
technologies, large natural products databases [15] have
come to exist, such as the National Institutes of Health
(NIH), Molecular Library Initiative [16], and ZINC [17].
These databases play a vital role in the drug discovery
processes and have been analyzed utilizing physicochemical
properties, molecular fingerprints and many other methods
[18].

Presently, how to identify effective targets or target net-
works for a particular disease is still a debating problem. And
it is still a big challenge to identify MTDs from the huge
pool of natural products. In this work, we propose a sys-
tems biology-based approach termed reverse Network Tar-
geting and Screening (rNTS) to discover MTDs from natural
products for a specific disease, i.e., cardiovascular diseases
(CVDs). The rNTS is a target-based drug discovery approach,
which consists of network analysis, drug targeting, in sil-
ico ADME screening, and experimental validations. Unlike
the traditional pharmaceutical development approach, net-
work targeting is first made to obtain a set of therapeutic
targets which are then applied to identify compounds that
bind with high affinity to them. The main protocols are as
follows:

(1) Reconstructing drug–target and target–target networks
for a disease of interest and then selecting several puta-

tive protein targets based on network pharmacology
techniques.

(2) Reintegrating the compound dataset of natural products
involved in specific disease therapy, and then a virtual
screening was performed for the selected targets.

(3) Refining the subset by a drug-likeness filtering to obtain
the multi-target agents.

(4) Conducting in vitro experiments to evaluate the reliabil-
ity of the proposed strategy.

Materials and methods

In this section, we consider to provide a simple, efficient
as well as dependable way to explore MTDs at a system
level. An example utilizing this rNTS approach is introduced
to discover MTDs in nature products for CVDs treatment.
The detailed descriptions of the rNTS method are shown as
following (Fig. 1).

Potential multi-target identification

To capture the targets for MTDs, firstly, the molecular net-
works were constructed, including drug–target (D–T) net-
work, in which a drug and a target are linked if a drug targets
a known protein; and target–target (T–T) network, whose
nodes are targets that are linked to each other if they simul-
taneously focused by the same set Gene Ontology (GO) [19]
terms. GO (http://www.geneontology.org) was constructed
by Ashburner et al. in 2000 and published in the UK jour-
nal Nature. Subsequently, the network topology analysis was
performed to obtain the most potential drug targets. The
bipartite graphs are generated by Cytoscape version 2.8 [20].
Cytoscape is a desktop Java application released by Smoot
et al. in 2010 under the Library Gnu Public License (LGPL).
Binary install bundles and source code for Cytoscape 2.8 are
available for download from http://cytoscape.org.

D–T network

According to the current research status of CVDs, a hierar-
chical approach integrating text mining, database searching,
network construction, and analysis was applied to identify
the key CVDs therapeutic targets. Firstly, a large-scale text
mining of PubMed and the manual extraction in the English
literatures (from 1995 to 2012) were performed to acquire the
CVDs therapeutic targets with the keywords “CVDs” and
“target”; secondly, mapping these targets to the DrugBank
Database (http://www.drugbank.ca/) to achieve their corre-
sponding approved and experimental drugs; then the D–T
network was constructed by linking the drugs with their tar-
gets; finally, the key topological parameter degree was ana-
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Fig. 1 Workflow for
multi-target drug screening
strategy

lyzed in the D–T network to screen out the most potential
targets.

T–T network

To further weight the biological correlativity of the CVDs
therapeutic targets, a T–T network was constructed based on
the GO annotations. GO term is a means of labeling three
independent wild-type gene products attributes: the molec-
ular function, the biological processes, and their subcellular
location. The process of network construction can be divided
into four steps and described as follows: firstly, the CVDs
therapeutic targets were mined in the same manner as labeled
in the D–T network; secondly, the GO annotations of the
CVDs therapeutic targets were extracted from the UniProt
database (http://www.uniprot.org/); thirdly, the CVDs thera-
peutic targets were linked together if they are focused by at
least one of the GO branches; finally, the topological para-
meter degree was measured to evaluate the role of targets in
the network.

Potential MTDs database

To extract the available herbs for the therapy of CVDs, a
wide range of text mining was performed in the PubMed
with the keywords “herbal medicine” and “CVDs”. And the
ingredients of the obtained herbs were obtained from the Tra-
ditional Chinese Medicine Systems Pharmacology Database
(TcmSP, http://sm.nwsuaf.edu.cn/lsp/tcmsp.php).

Drug targeting

The docking-based drug targeting was carried out with the
software GOLD3.0.1 [21]. The starting crystal structures of
the key targets were retrieved from the RCSB Protein Data
Bank (http://www.pdb.org/pdb/home/home.do). CHARMM
force field was employed, and hydrogen atoms were added
to the proteins. The binding site was defined as a sphere
encompassing protein residues within 12 Å of the original
ligand. A tetrahedral geometry was applied to Zn for the zinc-
containing protein. The default values were applied for other
parameters, and Genetic Algorithm runs were performed for
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each ligand. GOLD Score was used as the scoring function
for the targets.

ADME evaluation

To evaluate the pharmacokinetic properties of the potential
MTDs obtained above, an in silico ADME (absorption, distri-
bution, metabolism, and excretion of drugs) system integrat-
ing the human oral bioavailability (OB) and “drug-likeness”
(DL) models was applied. The two models were directed at
predicting OB and drug-likeness to uncover candidates with
promising pharmacokinetic properties.

The OB value was predicted by our previous con-
structed software OBioavail1.1 [22], which integrated with
the metabolism information (P-glycoprotein and cytochrome
P450s) and supported by 805 structurally diverse com-
pounds (drug or drug-like molecules) with known human OB.
Among the three models: multiple linear regression, partial
least square, and support vector machine (SVM), the SVM
provides the optimal performance (training set: R2 = 0.80,
SEE = 0.31; test set: Q2 = 0.72, SEP = 0.22).

The DL was obtained by calculating the Tanimoto simi-
larity [23] between herbal compounds and the drugs in Drug-
Bank database. The database dependent drug-likeness eval-
uation expression is shown as:

T (x, y) = x · y

‖x‖2 + ‖y‖2 − x · y
, (1)

where x is the molecular descriptor of herb compounds, y
is the average molecular property of all compounds in the
DrugBank database.

Potential compounds were regarded as MTDs in any of
the following cases: OB ≥ 30 % or DL ≥ 0.35. And all
corresponding data have been uploaded to the online database
TcmSP.

Experimental validation

In an effort to assess the reliability of our method, the
obtained compounds were further validated by in vitro exper-
imental methods. Salvianolic acid A, Salvianolic acid B,
and Rosmarinicacid were purchased from Shanghai Yuanye
Bio-Technology Co., Ltd. (Shanghai, China), Chengdu Sike-
hua Biotechnology Co., Ltd. (Chengdu, China), and Nan-
jing Zelang Medical Technology Co., Ltd. (Nanjing, China)
respectively. Licochalcone A and Curcumin were purchased
from Chengdu Biopurify Phytochemicals Ltd. (Sichuan,
China). The purity of all the compounds is >98 %. All drugs
were dissolved in 10 % ethanol and freshly prepared due to
loss of activity under long-term storage.

The effects of all the standard compounds on ACE
(Angiotensin-converting enzyme) were measured using the
ACE Kit-WST Detection (Dojindo, Kumamoto, Japan)

according to manufacturer’s instruction. Consistently, the
inhibitory effects of PTGS2/COX2 (Prostaglandin G/H syn-
thase 2), REN (Renin), and F2 (Prothrombin) were assayed
using Colorimetric COX (ovine) inhibitor screening assay kit
(Cayman Chemical, Ann Arbor, MI, USA), Human recom-
binant Renin Inhibitor Screening Assay Kit (Cayman Chem-
icals, Ann Arbor, MI, USA), and Sensolyte� 520 thrombin
activity assay kit (AnaSpec, CA, USA), respectively.

Statistical analysis

Inhibitory effects on the parameters measured were com-
pared by analyzing the means for differences using Student’s t
test and ANOVA test. Student’s t test was applied to compare
the means of two groups. ANOVA test was used to compare
the means of multiple groups. Differences were considered to
be significant when p < 0.05. Values were reported as mean
± SD of three parallel samples.

Results

Putative targets for MTDs

A catalog of 234 known target/CVDs relationships was col-
lected from the literature. Of these, 177 human targets can be
perturbed by 1,460 drugs. As shown in Fig. 2, all the 1,460
drugs and their targets generate a bipartite graph of D–T net-
work through 2,539 edges. The results show that the average
number of drugs per target is 14.3. However, merely a small
portion of proteins (51/177) connect with more than 14 drugs
(Table S1), indicating that proteins are targeted unequally,
and different proteins may have inherently disparate distur-
bance ratio in the cardiovascular system. In fact, these pivotal
targets are the centers of the network from the point of net-
work topology [24]. Thus, the 51 targets play vital roles in
the treatment of CVDs.

The T–T network provides a complementary, protein-
centered view of polypharmacology space which consists
of 177 nodes and 6,423 edges. As shown in Fig. 3, out
of 177 CVDs related targets, 175 have at least one link to
other targets, that is, they share the GO terms with other
targets. Some targets link only a few proteins, but most are
highly connected, which result in an average degree of 72.6.
Interestingly, about half of the protein targets (85/177) have
more interacting proteins than the average, suggesting that
the 85 targets are much closer in molecular function, bio-
logical process, and subcellular location than other CVDs
therapeutic targets (Table S2).

Due to the fact that a few highly connected nodes, often
called hubs, in biological networks have special biological
roles [25], hub proteins in the D–T network and T–T network
are either vital or biological correlativity in the therapeu-
tic of CVDs. Consequently, the 29 highly connected targets
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Fig. 2 The D–T network. A drug node and a protein node are linked if the protein is targeted by the corresponding drug. Node size is proportional
to its degree. The letters are target labels

(Table 1) shared by the 51 targets in the D–T network, and
the 85 targets in the T–T network are more inclined to act as
the potential targets for MTDs than others. And the 29 targets
were selected as putative targets for MTDs.

In an effort to validate the 29 selected targets indeed fit for
MTDs, we applied ClueGO, a Cytoscape plug-in to address
the biological interpretation of large lists of genes in the form
of networks [26], and partition it into four layers: molecular
function, the biological processes, subcellular locations, and
the KEGG functional analysis. As shown in Fig. 4a, the main
molecular functions were classified into three categories:
norepinephrine binding, G-protein coupled amine receptor
activity, and serotonin binding. The large majority of these
targets are related to norepinephrine binding (i.e., F2 and

ACHE) which is mostly responsible for the coronary vasodi-
latation [27]. Substantially, all the biological processes of the
targets are directly boiled down to vascular process in circula-
tory system (Fig. 4b), indicating that the biological processes
of these targets are chaste. In Fig. 4c, the principal subcellu-
lar locations were divided into two kinds: neuron projection
and mitochondrion. The KEGG pie-chart (Fig. 4d) shows the
functional effect of differentially targets on cellular pathways
in CVDs. The prime groups are fallen into metabolic path-
ways, serotonergic synapse, or renin-angiotensin system.

Of the 29 putative targets for MTDs in Table 1, ACE,
PTGS2, REN, and F2 were selected as the multi-target inter-
vention solution for further molecular screening and exper-
imental verification for the following reasons. Firstly, the
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Fig. 3 The T–T network. Two
neighboring targets are linked if
they simultaneously focus one
GO term. Node size is
proportional to its degree. The
letters are node labels

four targets distribute through the main groups of the four
independent attributes. Secondly, the crystal structures are
available from the PDB for further docking screening. Fur-
thermore, these four proteins are commercially available for
further experiment.

Potential MTDs

Herbs determination and compounds database building

Among the large volume of CVDs-related articles, Ligus-
ticum chuanxiong (L. chuanxiong), Dalbergia odorifera
(D. odorifera), Corydalis yanhusuo (C. yanhusuo), Salvia
miltiorrhiza (S. miltiorrhiza), Panax notoginseng (P. noto-
ginseng), Borneolum, Glycyrrhizae uralensis (G. uralensis),
Atractylodes macrocephala (A. macrocephala), Pinellia rhi-
zome (P. rhizome), Poria cocos (P. cocos), Cinnamomi ramu-
lus (C. ramulu), Radix astragali (R. astragali), Spatholobus
suberectus (S. suberectus) and Curcuma aromatic (C. aro-
matic) are found to be the most promising herbs for CVDs
treatment. They are generally originated from herbal medi-
cine and totally validated their therapeutic effects by ani-

mal models. Furthermore, the information for these herbs
was summarized from PubMed, as shown in Table 2. And a
total of 1,780 molecules (Table S3) from these herbs were
deposited in the TcmSP database.

Drug targeting

The docking score in GOLD predicts potential binding affini-
ties of compounds against the four targets at selected regions.
Normally, the threshold of docking score is 60 for selecting
an active ligand. In order to obtain more potential compounds
for further validations, the threshold decreases to 50. As the
docking scoring functions is not accurate enough to properly
identify any ligand. Therefore, 380 out of 1,780 compounds
were treated as hits for further evaluation. Of particular note,
there is only one compound in Borneolum and Poria showed
better GOLD fitness scores.

ADME screening

255 of the 380 compounds with good docking scores were
predicted with favorable pharmacokinetics properties by
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Table 1 Putative targets for
MTDs

Target Protein names D–T degree T–T degree

ACE Angiotensin-converting enzyme 17 103

ACHE Acetylcholinesterase 48 112

ADA Adenosine deaminase 16 113

ADRA1A Alpha-1A adrenergic receptor 79 87

ADRA1B Alpha-1B adrenergic receptor 43 74

ADRA2A Alpha-2A adrenergic receptor 60 103

ADRA2C Alpha-2C adrenergic receptor 33 92

ADRB1 Beta-1 adrenergic receptor 44 96

ADRB2 Beta-2 adrenergic receptor 48 101

AKR1B1 Aldose reductase 29 93

CACNA1C Voltage-dependent L-type calcium channel subunit
alpha-1C

18 82

CHRM1 Muscarinic acetylcholine receptor M1 75 73

CHRM3 Muscarinic acetylcholine receptor M3 56 98

DRD2 D(2) dopamine receptor 68 101

F2 Prostaglandin F2 receptor negative regulator 100 87

GSK3B Glycogen synthase kinase-3 beta 20 115

HRH1 Histamine H1 receptor 79 86

HTR1B 5-Hydroxytryptamine receptor 1B 27 88

HTR2A 5-Hydroxytryptamine receptor 2A 66 119

HTR2B 5-Hydroxytryptamine receptor 2B 19 106

HTR2C 5-Hydroxytryptamine receptor 2C 38 100

HTR3A 5-Hydroxytryptamine receptor 3A 18 79

NOS2 Nitric oxide synthase, inducible 39 98

NR3C1 Glucocorticoid receptor 40 74

PLAU Urokinase-type plasminogen activator 33 81

PPARG Peroxisome proliferator-activated receptor gamma 38 109

PTGS2 Prostaglandin G/H synthase 2 57 100

PTPN1 Tyrosine-protein phosphatase non-receptor type 55 88

REN Renin 18 73

ADME screening (Table S4). For the 255 chemicals, 142 of
them are orally available (OB ≥ 30 %), and 192 compounds
have drug-likeness features (DL ≥ 0.35). Of the 255 com-
pounds with good OB and DL values, many of them were
biologically active as reported in the literature, such as Dihy-
drocurcumin (M192, OB = 65.49 %; DL = 0.41), Curcumin
(M194, OB = 2.18 %; DL = 0.41), and Dehydrocorydaline
(M206, OB = 60.36 %; DL = 0.68). Dihydrocurcumin and
Curcumin are involved in the natural product C. aromatic.
For Dihydrocurcumin with OB of 65.49 % and DL 0.35, it
presents potent protective effect on anti-inflammatory [28],
and thus has therapeutic effects on CVDs. Further, as one of
the important ingredients of C. aromatic, Curcumin has rela-
tive poor OB (2.18 %). In fact, this compound can be metab-
olized into several products such as Dihydrocurcumin (OB =
65.49 %) under the influence of enzymes in vivo [29]. This
information explains why Curcumin exhibits pharmacolog-
ical activities despite its poor OB value. Dehydrocorydaline

(M206, OB = 60.36 %; DL = 0.68), a natural alkaloid, is
the main effective ingredient in C. yanhusuo. Except for the
aforementioned anti-inflammatory activity, Dehydrocoryda-
line is able to relieve pain by inhibiting adrenergic neuron
relaxation due to its blockade effect on the Taenia caecum
and pulmonary artery adrenergic nerve terminals [30]. It has
been reported to be one of the active compounds of C. yan-
husuo for the treatment of coronary heart disease [31].

Among the 255 potential MTDs, five compounds, namely
Salvianolic acid A, Salvianolic acid B, Rosmarinicacid, Lic-
ochalcone A, and Curcumin (Table 3) were randomly singled
out for further experimental validations. Random selection is
able to ensure that the five compounds could better represent
the theoretical results and prove the widespread applicability
of the theoretical approach applied in this study. Meanwhile,
these five compounds are readily available on the market.
Due to some restrictions of test conditions, this study only
tested 5 of the 255 potential MTDs.
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Fig. 4 ClueGO analysis of the CVDs targets. Only the label of the
most significant term per group is shown. The node pie charts repre-
sent the molecular function/the biological processes/subcellular loca-
tion/KEGG functional of each target have corresponding to their net-
works in this target set. a Representative the molecular function inter-

actions among CVDs targets. b Representative the biological processes
interactions among CVDs targets. c Representative subcellular location
interactions among CVDs targets. d Representative KEGG interactions
among CVDs targets

Experimental validation

The 50 % inhibition concentration (IC50) values for the five
selected compounds and their corresponding structures are
summarized in Table 4.

Salvianolic acid A

As shown in Table 4, Salvianolic acid A exerted inhibitory
activity against ACE, PTGS2, REN, and F2, with IC50 values
of 27.3 ± 3.2, 8.3 ± 1.0, 24.4 ± 3.1, and 144.7 ± 17.0 μM,
respectively. This result demonstrates that Salvianolic acid
A is the ideal master in the four targets. We note that, among
them, Salvianolic acid A shows the highest inhibition effect
on PTGS2 compared to those on ACE, REN, and F2 (p <

0.05), which indicate that PTGS2 is significantly more sen-
sitive to Salvianolic acid A than others.

Salvianolic acid B

Salvianolic acid B is a potent compound able to inhibit ACE,
PTGS2, and REN, respectively. The decreasing order of the
IC50 values is REN (24.9 ± 3.2) > PTGS2 (28.7 ± 3.5) >

ACE (86.9 ± 11.1). Actually, the statistical analysis indi-
cated that the inhibitory activity of REN by Salvianolic acid
B was significantly higher than that of PTGS2 or ACE (p <

0.05). Surprisingly, Salvianolic acid B did not exhibit evident
activity on F2 with IC50 > 500 μM. As compared to Sal-
vianolic acid A, obtained from the same plant S. miltiorrhiza,
Salvianolic acid B was also able to inhibit the four targets.

Rosmarinicacid

Rosmarinicacid did not exhibit significant activity on pro-
tein F2, but with good activities on ACE, PTGS2, and
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Table 2 Information for CVD-related herbs

Herb name Herb type Species Findings Reference

L. chuanxiong Ligusticum chuanxiong Mice Lactones from Ligusticum chuanxiong Hort. reduces
atherosclerotic lesions in apoE-deficient mice via
inhibiting over expression of NF-kB -dependent
adhesion molecules

PMID: 24594239

D. odorifera; S.
miltiorrhiza;
L. chuanxiong

Guan-Xin-Er-Hao : Salvia
miltiorrhiza, Ligusticum
chuanxiong, Paeonia lactiflora,
Carthamus tinctorius and
Dalbergia odorifera

Rat Guan-Xin-Er-Hao exerts significant cardioprotective
effects against acute ischemic myocardial injury in
rats, likely through its antioxidation and antilipid
peroxidative properties and thus may be used as a
promising agent for both prophylaxis and
treatment of ischemic heart diseases

PMID:18951001

C. yanhusuo; Corydalis yanhusuo Rat Corydalis yanhusuo exerted salutary effects on heart
failure induced by myocardial infarction in rats

PMID: 17524235

S. miltiorrhiza Salvia miltiorrhiza Rat After 2 weeks treatment with purified Salvia
miltiorrhiza extract, survival rates of rats with
experimental myocardial infarction were
marginally increased (68.2 %) compared with
saline (61.5 %)

PMID: 15808885

P. notoginseng Panax notoginseng saponins Rat Saponins of Panax notoginseng prevent cardiac
ischemia and the action is considered to be related
to the inhibition of lipid peroxidation

PMID: 2403009

Borneolum;
R. Chuanxiong

Suxiao Jiuxin Pill: Rhizoma
Chuanxiong and Borneolum

Rat Suxiao Jiuxin Pill plays an important role in
anti-inflammation and inhibition of oxidative
stress, which possibly are the mechanism of its
preventing and treating atherosclerosis

PMID: 21977809

G. uralensis Glycyrrhiza glabra Rats Glycyrrhiza glabra root registered a significant
decline in plasma lipid profiles and an increase in
high density lipoprotein -cholesterol content

PMID: 17054099

C. ramulu;
P. cocos

Geiji–Bokryung–Hwan:
Cinnamomi Ramulus, Poria
Cocos, Mountan Cortex Radicis,
Paeoniae Radix and Persicae
Semen

Rabbits The reduction in atherosclerosis by
Geiji–Bokryung–Hwan relies not only on its
cholesterol-lowering effect but also more heavily
on its antioxidant potential, which prevents
endothelial damage and inhibits low density
lipoprotein oxidative modification in
hypercholesterolemic animals

PMID: 12757741

S. suberectus Spatholobus suberectus ICR
mice

Spatholobus suberectus has antiplatelet effects via
inhibition of the glycoprotein IIb/IIIa receptor

PMID: 21211555

C. aromatic Curcuma aromatic Wistar
albino
rats

Significant cardioprotection and functional recovery
demonstrated by Curcuma aromatic may be
attributed to its anti-apoptotic property

PMID: 16504000

P. rhizome Da-Chai-Hu-Tang:Bupleuri radix,
Pinellia rhizome, Scutellariae
radix, Paeoniae radix, Zizyphi
fructus, Aurantii fructus
immaturus, Zingiberis rhizoma
and Rhei rhizoma

Rabbit Da-Chai-Hu-Tang has the inhibit effect on the
progression of atherosclerotic lesions

PMID: 10030725

R. astragali Radix Astragali Rat Radix Astragali effectively protected against cardiac
functional and morphological aberrations in
experimental autoimmune myocarditis

PMID: 18782607

A. macrocephala Atractylodes macrocephala Rat Polysaccharides extract of Atractylodes
macrocephala may enhance immunity and improve
heart function in aged rats

PMID: 22777209

REN (IC50 of 144.3 ± 17.3, 152.9 ± 15.6, and 60.1 ±
8.5 μM, respectively). Among them, REN showed the great-
est inhibitory effect compared to the effects on ACE and
PTGS2 (p < 0.05). Analogously, like Salvianolic acid B,
Rosmarinicacid revealed much weaker inhibitory properties
against the four targets than Salvianolic acid A. The data
suggest that Salvianolic acid A is the strongest inhibitor

against the four targets among the three compounds in
S. miltiorrhiza.

Licochalcone A

Licochalcone A exhibited relatively strong activity against
ACE with IC50 of 46.9 ± 6.4 μM. However, it revealed
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Table 3 The information of the five selected compounds for experimental verification

Number Compound OB DL Gold Scores Herb

ACE REN F2 PTGS2

M16 Salvianolic acid A 2.96 0.70 79.13 65.5 79.05 73.77 S. miltiorrhiza

M18 Rosmarinicacid 1.38 0.35 67.02 50.61 62.59 58.39 S. miltiorrhiza

M33 Salvianolic acid B 3.01 0.41 83.47 83.19 80.45 74.79 S. miltiorrhiza

M157 Licochalcone A 45.74 0.33 58.66 55.86 61.18 57.32 G. uralensis

M194 Curcumin 2.18 0.41 73.43 56.54 76.2 65.43 C. aromatica

Table 4 Structures and IC50 values for the five selected compounds

Chemical name Structure Targets inhibition assay (IC50 (μM): mean ± SD)

ACE PTGS2 REN F2

Salvianolic acid A 27.3 ± 3.2 8.3 ± 1.0 24.4 ± 3.1 144.7 ± 17.0

Salvianolic acid B 86.9 ± 11.1 28.7 ± 3.5 24.9 ± 3.2 >500

Rosmarinicacid 144.3 ± 17.3 152.9 ± 15.6 60.1 ± 8.5 >500

Licochalcone A 46.9 ± 6.4 >500 >500 >500

Curcumin 278.0 ± 35.4 55.8 ± 8.1 55.9 ± 7.0 >500

weaker effects against PTGS2, REN and F2 (IC50 >

500 μM, P < 0.05) than ACE, suggesting that Licochal-
cone A is more critically involved in inhibiting ACE than the
combination of the four targets.

Curcumin. Curcumin exerted the highest inhibitory activ-
ities against both PTGS2 and REN, with IC50 values of
55.8 ± 8.1 and 55.9 ± 7.0 μM, respectively. As for ACE
(278.0 ± 35.4 μM), Curcumin inhibited it to a weaker extent
than the former two proteins (p < 0.05). In addition, Cur-
cumin has also been found to inhibit F2 in a dose-independent
manner (IC50 > 500 μM), indicating that Curcumin is a low-
affinity binder to F2.

Binding mode

As shown in Fig. 5, Salvianolic acid A was selected as a tem-
plate to show the docking mode of this class of inhibitors and
reveal the main interactions within the enzyme active sites.
The docking scores for Salvianolic acid A with ACE, REN,
F2, and PTGS2 are 79.13, 65.50, 79.05, and 73.77, respec-

tively. The interactions consisted of H-bonds, zinc-anion
interactions, cation-π and π−π stacking. (1) The residues
VAL379 and ASP415 of ACE both formed H-bonds with
the Salvianolic acid A molecule. Further, the close contact
of Salvianolic acid A on the zinc-binding site (purple ball)
of ACE may facilitate chelation of metal ions surrounded
by ACE (Fig. 5a). (2) Salvianolic acid A interacted with F2
through forming H-bonds with ASN143, GLU203, SER262,
TYR240, PHE239, and ARG233 (Fig. 5b), suggesting that
extensive hydrogen bonding are important for the favorable
conformation. (3) Salvianolic acid A exhibited direct inter-
actions with PTGS2 by π−π interactions at PHE487 and
cation-π interaction at ARG89 (Fig. 5c). (4) In Fig. 5d, Sal-
vianolic acid A was bounded by the formed hydrophobic
interaction with ILE118, GLN16, ALA226, and TYR159.
The phenyl ring of Salvianolic acid A also produced a strong
π−π interaction with TYR80. The implication of correct
mode of ligand–protein binding is extremely important in
drug discovery.
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Fig. 5 Molecular models of Salvianolic acid A in the binding sites of
ACE, F2, PTGS2, and REN. The dashed lines show the formation and
distance of the hydrogen bonds. Active site amino acid residues are
represented as lines. a Representative interactions between Salviano-

lic acid A and ACE. b Representative interactions between Salvianolic
acid A and F2. c Representative interactions between Salvianolic acid
A and PTGS2. d Representative interactions between Salvianolic acid
A and REN

Discussion

Drug discovery has been subjected to evolutions through
the ages, moving from one drug acting on a single recep-
tor to computational multi-target approaches. However, the
immense progress in genomic, proteomic, HTS, and rational
drug design technologies tend to outstrip the increased num-
ber of approved single target drugs. It is currently evident
that this process is not as effective as expected for the result-
ing hits often lack efficacy in vivo. In this study, we explored
a new systems pharmacology method to discover MTDs for
CVDs. As the technical route to the ultimate ideal of systems
pharmacology, network pharmacology is changing the tradi-
tional drug discovery process by shifting from one drug–one
target level to higher levels of biological systems. Thus, the
first challenge is to find the set of systems targets that have
desirable clinical effects.

Network analysis for identification of key targets

To find the relevant target-sets of MTDs, a network-driven
approach was applied. In the notion of network, the complex
system is considered as a range of node interactions linked by
edges. In this study, we analyze the hubs and the centric ele-
ments of the network [24] to find the key targets. Compared
to traditional target finding methods, such as experimental
verification, the network-driven approach, topology analy-

sis stresses the target action impacts on the entire network.
Therefore, four therapeutic targets, i.e., PTGS2, F2, ACE,
and REN were obtained, and we found that:

(1) The four targets are of high degree (Table 1), as the high-
degree nodes often play more important role in a network
than other low-degree nodes [32].

(2) The four targets affect the various aspects of CVDs. The
treatment of CVDs usually involves anti-inflammation,
anti-thrombus, and controlling high blood pressure. Of
particular note, PTGS2 has been shown to play a key
role in the regulation of inflammation [33], which plays
a central role at all stages of atherosclerosis—the main
cause of clinical CVDs events. As for F2, the main
executioner of the coagulation cascade and platelet
aggregation [33], it eventually promotes the formation
of blood clots. ACE could convert angiotensin I into
angiotensin II, which is a vasoconstrictor and thus reg-
ulates blood pressure. In addition, the substrate of ACE
is the product of its upstream target REN, the first
enzyme of the classic systemic renin-angiotensin sys-
tem. Hence, REN also plays a key role in blood pressure
regulation.

(3) The four targets locate on the complementary patho-
logical pathways. The protein PTGS2 locates on the
cyclooxygenase pathway, which could metabolize
arachidonic acid into prostanoids. And there is mount-
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ing evidence that some of these metabolic products
play critical roles in CVDs [34]. F2 is a key pro-
tein in neuroactive ligand-receptor interaction pathway,
which is well known in the development and progress
of CVDs processes such as coronary heart disease. In
this pathway, the F2 receptor is closely related to the
cardiac function [35]. ACE sits at the downstream of the
hypertrophic cardiomyopathy (HCM) pathway, which is
directly related to the genetic CVD HCM [36]. REN is
an important component of the renin-angiotensin system
pathway, which plays a vital role in the pathogenesis of
CVDs that major regulates blood pressure and fluid and
electrolyte homeostasis [37].

Systems level MTDs discovery

A battery of in silico methods to prescreen the potential
MTDs among the promising herbs has been broadly adopted
for speeding up lead compound discovery with multi-targets
[10,11,13,38]. In this work, a geometrical matching-based
docking method has been employed in screening the active
compound and probing the binding modes for ligands [39].
In this method, there is no need for structural features of
the active compounds and thus appropriates for the com-
prehensive screening in our large compound library (1,780
molecules of fourteen herbs). Our results clearly show that
380 common molecules (21 %) hit the four targets in the-
ory. To some extent, it illustrates that multi-target agents are
abundant in nature in number which is consistent with the
multi-target feature of herb medicines.

Pharmacokinetic properties (absorption, distribution,
metabolism, and excretion of drugs) are critical processes
in drug discovery and development. Two reliable in silico
models were applied to filter compounds with reasonable
oral bioavailability and drug-likeness properties. The wealth
of potential MTDs that was obtained in our study indirectly
proved the high efficiency of our approach. Of particular
note, the five tested compounds all are orally bioavailable
or drug-like. Of these, Salvianolic acid A, Rosmarinicacid,
and Salvianolic acid B belong to S. miltiorrhiza, and are
highly effective in facilitating microcirculation and coronary
vasodilatation, inhibiting thromboxane formation and sup-
pressing platelet adhesion and aggregation [40]. As for Lic-
ochalcone A, which has a relatively high OB value, there is
evidence that the corresponding herb G. uralensis consump-
tion enhances vasoconstriction action in vascular smooth
muscles [41]. Curcumin, the ingredient of C. aromatic, is able
to invigorate circulation, reduce stasis, and inhibit inflamma-
tion [42]. The effects of these three herbs are in accordance
with our results described in Table 2.

Multiple targets

MTDs enhance therapeutic efficacy by collective adjusting
on a primary target and the regulation on compensatory tar-
gets. In today’s world, instead of the “one disease-one target-
fits-all” philosophy, most people are increasingly aware of
the MTDs superiority in restoring healthy state. Then, what
of the roles that herbs may play in this?

Indeed, many drug candidates with much potential for
further development are from natural sources as pharmaco-
logical tools by triggering the switch of multi-target states.
For example, the water-soluble phenolic acid Salvianolic
acid A is active against targets involved in antiplatelet
and antithrombotic functions [43,44]. And Curcumin can
decrease blood total cholesterol and low-density lipoprotein-
cholesterol level [45]. Our results propose that herbal
ingredients that normally bind to a series of functionally
related/complementary targets have great potential for tar-
geting multi-targets, which is worth more attentions for both
orthodox and alternative medicine.

Low binding affinity

Low-affinity binders are molecules and drugs that interact
with cellular proteins through low-affinity physical inter-
actions. Unlike many molecules that target a single pro-
tein, MTDs usually interact with multiple targets in a weak-
bonded way [2]. A fundamental question raised is whether
the weak binding can regulate body system equally or worse
than the high-affinity molecules? Examining the track record
in biological networks for drug development over the last
decade has indicated that the essentiality of the multiple
nodes is determined by the inherent redundancy, multiplicity,
and system regulation of the biological network. For exam-
ple, Nelfinavir is a multi-target anticancer drug with weaker
binding affinity than the single-target inhibitors, but shows
strong positive pharmacological effects [46].

In this work, our five compounds were effective in target-
ing key proteins. In particular, Salvianolic acid A revealed
inhibitory effects for the four targets, i.e., PTGS2, ACE,
REN, and F2. Salvianolic acid B, Rosmarinicacid, and
Curcumin exhibited significant inhibitory activity against
the four targets except for F2. However, Licochalcone A
solely showed significant activity on ACE. The results might
demonstrate that the MTDs for CVDs are often low-affinity
binders. However, why these low-affinity binders are effec-
tive in the therapy of CVDs? The main reasons are as follows:

(1) MTDs targeted-proteins that locate at the same path-
way. Among the four combined targets, both proteins
ACE and REN site on renin-angiotensin system (Fig. 6).
Triggering the unilateral renal artery stenosis renin-
angiotensin system is of much concern to the hyper-

123



Mol Divers

Fig. 6 Distribution of the four targets on corresponding signaling pathways

tension advance and balance disturbance [47]. Thus,
compounds such as Salvianolic acid A and Salviano-
lic acid B that with regard to blocking the ACE and
REN might allow for collective inhibition of the renin-
angiotensin system pathway, which represents evidence-
based mechanism for restoring physiological balance of
CVDs through timely targeted interventions.

(2) MTDs targeted-proteins located at the upstream of a
pathway. Normally, a drug molecule that interacts with
a protein upstream of a signaling pathway perturbs the
cellular network larger than that of a downstream tar-
get [48]. Protein F2 is an upstream target that regulates
the actin cytoskeleton pathway (Fig. 6), which is criti-
cal for maintenance of endothelial barrier functions, and
alterations the expression level [49]. Studies show that
vascular endothelial factors play a crucial role in the
regulation of blood pressure [50] and blood clot [51] as
well as the underlying pathology of atherosclerosis [52].
Therefore, early endothelial dysfunction interventions
are necessary for delaying and controlling the develop-
ment of cardiovascular events. The experiment verified
Salvianolic acid A with respect to disturbing F2 might

improve the clinical symptoms of CVDs by this signal-
ing cascade.

(3) MTDs targeted-proteins located in complementary path-
ways. Evidence supports that CVDs are closely asso-
ciated with the cytoskeleton pathway and the renin–
angiotensin system pathway as well as the regulation
of actin cytoskeleton pathway [34]. These pathways
regulate the different function modules of CVDs: the
cyclooxygenase pathway closely relates to inflamma-
tion; the renin-angiotensin system pathway involves
in blood pressure regulation; the regulation of actin
cytoskeleton pathway strongly connects to blood clot
(Fig. 6). In this study, Rosmarinicacid and Curcumin
that target proteins ACE, REN, and PTGS2 help body
restore balance by regulating these signal pathways. This
indicates that MTDs exhibit therapeutic effects by acting
on a set of complementary pathways.

Conclusion and perspective

Despite drug development is a fast-developing domain, the
multi-target drug discovery is still in its infant state at
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present. At present, drug design is shifting to a systems
pharmacology-based approach which improves the target
identification success rate. In this work, we have highlighted
the principles and applications of the rNTS approach in
MTDs discovery for a specific disease. The “wet” experi-
ment proves the effectiveness of this strategy to combine tar-
gets, discover the potential agents. The novelty of our rNTS
approach is reflected by the combination of network target-
ing and biologically active compound screening. We list a
few main findings for further directions in the development
of MTDs:

(1) The proposed network analysis approach is capable of
selecting a set of primary targets.

(2) The molecular docking and pharmacokinetic evaluation
help to summarize the interactions of a compound with
the therapeutically combined targets.

(3) The rNTS approach, combining with computational and
experimental analyses, offers a path to find potential
combination targets for treating a specific disease.
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