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Abstract: With the rapid development of high-throughput genomic technologies and the accumulation 
of genome-wide datasets for human disease, it has been shown that using only reductionistic principles 
has been difficult to capture the complex biological networks and design rational medication. However, 
the emerging paradigm of “network based methodology” proposes to harness the power of networks to 
uncover relationships between various data types of interest for drug discovery. Recent advances include 
networks that encompass relationships between drugs, disease-related genes, therapeutic targets and diseases. It is shown 
how network techniques can help in the investigation of the mechanism of action of existing drugs, new molecules, or to 
identify novel disease genes and targets. We review how these different types of network analysis approaches facilitate 
drug discovery and their associated challenges. Some representative examples are reviewed to show that network analysis 
is a powerful, integrated, computational and experimental approach to improve the drug discovery process.  
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INTRODUCTION 

 In recent years, the prospect for complex disease 
pharmacotherapy seems to have “hit the wall”, with multiple 
high-profile trial failures and declining industrial interest. 
Reasons for such predicament might include an intensive 
regulatory environment, a competitive market, the elevated 
bar of existing medicines for further innovation and the 
increasing cost of mega-trials. However, the most important 
and intrinsic reason comes up to the lack of mechanistic 
understanding of drug action and the complicated etiologies 
[1-3]. 

 The strategy behind many modern pharmaceuticals is to 
restore the healthy state by inhibiting a molecular target that 
is central to the disease mechanism. Drug discovery efforts 
are, therefore, crucially dependent on identifying individual 
molecular targets and validating their relevance to a human 
disease. This target validation is followed by identification 
of specific chemical- or antibody-based modulators of the 
target. As an example, varieties of blockbusters for the 
therapy for cardiovascular diseases have been sprung up, 
such as statins, angiotensin-converting enzyme (ACE) 
inhibitors, anti-platelet agents and beta-blockers. However, 
many of these drugs play functional roles in biological 
processes outside the scope of the drug’s intended effects [4, 
5]. This often leads to unexpected situations at various stages 
during the drug discovery process. For example, torcetrapib 
(Pfizer, New York, NY, USA), an inhibitor of cholesteryl 
ester transfer protein (CETP), failed in the Investigation of 
Lipid Level Management to Understand Its Impact in 
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Atherosclerotic Events (ILLUMINATE) trial for the 
increased risk of mortality and morbidity [6], due to the off-
target effects of torcetrapib on hypertension [7]. On the 
contrary, the unpredictable off-target interaction may also 
give rise to safety effects on patients. For example, statins, 
originally designed to target elevated lipids for the treatment 
of atherosclerosis, might also confer cardiovascular benefit 
with their anti-inflammatory effects, independent of LDL-
lowering effects [8]. 

 Indeed, a growing body of post-genomic biology (as 
reflected for acquisition of high-throughput genomic, 
transcriptomic, proteomic, and metabolomic data) has been 
revealing a far more complex portrait of drug actions. It is 
appreciated that many drugs with a specific efficacy actually 
act on multiple protein targets [9, 10]. This so-called 
polypharmacology is an undesirable property in the 
conventional reductionist paradigm and it might be more 
suitable to view through the lens of systems-based 
approaches [10]. Common forms of complex diseases are 
caused by multiple genetic factors, each of which contributes 
modestly to the disease risk, and also environmental factors. 
Generally, it has become evident that many human diseases 
cannot be attributed to the malfunction of a single gene but 
to complex interactions among multiple genetic variants. 
Perturbations in several genes might only make subtle 
contributions to the susceptibility of a particular individual 
[11]. Their complexity resists traditional efforts which have 
been applied to identify a single gene or pathway to treat the 
disease [12]. Therefore, the disease causations should be 
studied on the basis of the entire body of knowledge 
including all genes that are associated with the clinical traits. 
Accordingly, a systems-based approach integrating all the 
potential related factors involved in the pathologies and a 
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disease treatment in a network framework is required to 
address these complex issues. 

 Currently, network analysis has been a main branch of 
computational biology. A network offers a natural 
abstraction of a set of entities (nodes) and of the relationships 
(edges) occurring among them. These nodes and edges can 
have various attributes and annotations. Depending on the 
nature of the study, nodes can represent genes, proteins, 
small molecules or any other entities capable of interacting 
in the system being modeled. Edges connecting these nodes 
represent the physical interactions, genetic regulatory 
interactions and higher order relationships such as co-
expression or some other shared properties linking the nodes. 
Edges can have directions, weights and other attributes that 
provide information about the hierarchy of effects. In this 
article we review some of the recent advances in the field of 
network pharmacology, starting with approaches relying on 
various network methodologies (Fig. 1). Drugs targeting for 
diseases that involve various interactions between multiple 
systems and those with complex etiology will most likely 
benefit from a network-based approach. Based on the 
specific pathologies, two systems-based network approaches 
can be applied to identify novel drugs or targets for a given 
disease. The so-called “central hit” strategy for targeting 
disease (e.g., cancer) critical network nodes seeks to disrupt the 
network, whereas more rigid systems (e.g., cardiovascular 
disease) may need a “network influence” approach to 
identify and regulate nodes or edges of multi-tissue pathways 
for essentially redirecting or restoring biological networks. 
We will show examples of applications of these methodologies 
both in explaining how the network analysis can facilitate 
drug discovery and target identification. 

DRUG-DRUG NETWORKS 

 In the drug-drug network, nodes are drugs, and two drugs 
are connected to each other based on their similarity profiles 
including chemical and structural properties, and also 
molecular and phenotypic profiles. Drug-drug network can 
be used to understand the relationships between different 
drug compounds and connect them to potential targets and 
diseases based on their similarities to other compounds in the 
network. The rational basis for drug-drug network 
approaches is rooted in that the known quantitative or 
qualitative profiles model the effect of drug compounds in a 
biological system. Then, the degrees of similarity that exist 
can be exploited using computational approaches for drug 
targeting and repositioning. 

 When drug compounds are integrated into a network of 
relationships based on chemical and structural similarities, 
drug action can be inferred by simple chemical characteristics. 
This approach typically incorporates quantitative structure 
activity relationship (QSAR) data with physiochemical and 
structural properties of biological targets. The computational 
basis of chemical similarity approaches is to extract a set of 
chemical fingerprints as features for each drug, and then to 
relate the drugs directly to each other by clustering or 
constructing networks based on the extracted features [13]. 
Machine learning classifiers such as self-organizing maps, an 
unsupervised-machine learning technique, have been used to 

compare candidate ligands with the known drugs of a target 
protein to find new compounds [14, 15]. Recently, a notable 
advance which used network analysis to predict 
polypharmacology was the development of the similarity 
ensemble approach (SEA) [16]. In this approach, drug 
targets were represented by a set of ligands which were 
known to bind to the targets. To evaluate a novel query 
compound for a specific drug target, using the Tanimoto 
coefficient to calculate the pair-wise similarity score to 
represent the chemical similarity between two compounds, a 
raw score was derived by calculating the overall chemical 
similarity between the query compounds and each member 
of the set of ligands binding to the target. A statistical model 
based on the extreme value distribution was then used to 
normalize the sum of similarity scores to define a significant 
score, and scores surpassing the significance threshold 
indicated the query drug is a candidate ligand of the target. 
Many predictions by the SEA have been experimentally 
confirmed [16-18]. In addition, considerable efforts have 
been made to develop 3D molecular similarity methods [19, 
20].  

 Another promising approach is to use phenotypic 
information to relate drugs to each other. Compared to the 
chemical property based network approach described above, 
phenotype based drug-drug network provides a representation 
of resultant physiological consequences of drug compound’s 
biological activity. Phenotypes were divided into two types 
based on genome-wide screening: a high-dimensional 
intermediate phenotype including a gene expression profile, 
and a low-dimensional endpoint phenotype such as a side 
effect or cell-growth rate. These phenotypes can be treated as 
molecular signature of drugs or as a feature vector in the 
language of machine learning to classify different drugs [21]. 

 Recently, Campillos et al. proposed a systematic method 
to relate drugs to each other based on the assumption that 
drugs with similar side-effects are likely to interact with 
similar target proteins [22]. For each drug, they extracted 
side effects from the drug package labels and translated them 
into standard vocabularies using the Unified Medical Language 
System (UMLS) Metathesaurus [23]. The side-effect 
information was weighted by using a scheme that integrated 
their frequency and correlation across all drugs in the set, 
and similarity scores of pairwise drugs were computed based 
on the sum of the respective weights of their overlapping 
side-effects. A randomization approach was used to establish 
the significance of the side effect similarity scores, which 
were further incorporated with a measure of the structural 
similarity between drugs to increase predictive power. The 
authors used this approach to calculate drug–drug similarity 
coefficients based on their shared side-effect profiles and 
used these as edges to construct a network. These phenotypic 
side-effect similarities helped the authors infer cases where 
two drugs were likely to act through common targets. The 
resulting drug–drug relationships were shown to recapitulate 
many shared target relationships between drugs, and several 
predicted novel drug–target relationships were experimentally 
confirmed.  

 Moreover, a new way developed to inferring drug-drug 
network is through the extent of their similarity in inducing 
cellular gene expression. In this drug-drug network, each 
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edge represents a significant similar gene expression profile 
between two drug nodes. Each drug or disease may be 
considered as an indicator inducing an array of specific gene 
expression changes in a cell [24]. The usefulness of a drug-
drug network is based on the hypothesis that although the 
precise mechanism of action is not well-understood for many 
approved compounds, high-throughput molecular expression 
changes can be used to represent a signature of drug effect in 
a biological system.  

 One of the most comprehensive and systematic data 
resource that enables network analysis is the Connectivity 
Map (CMap) project [25], the first large installment of gene 
expression profiles following drug treatment on five human 
cancer cell lines with 309 small molecules. The molecular 
activity profile of each drug in the set was ordered into a 
ranked list according to expression changes after exposure to 
the drug compound. These profiles can be used as the basis 
of comparison to connect drugs based on shared gene 
expression profiles in the CMap. Using the CMap data, Iorio 
et al. first generated a drug-drug network using statistically 
significant transcriptional pairwise similarities between 

drugs as the edges [26]. The pairwise similarity between the 
gene expression profiles following drug treatment computed 
using a novel, “drug distance metric” based on Gene Set 
Enrichmen Analysis (GSEA) [27]. Drugs were then organized 
into a network using the resulting similarity scores, and 
analyzed with graph-theoretic tools to identify coherent 
“communities” of drugs consisting of groups of densely 
interconnected drug nodes. The resulting drug communities 
were indeed enriched for drugs sharing with similar 
mechanism of actions and therapeutic application. The 
authors used this network to classify both known and novel 
HSP90 inhibitors and CKD2 inhibitors, and also predict and 
experimentally validate previously unknown cellular 
autophagy activity for the rho-kinase inhibitor Fasudil, a 
known ROCK inhibitor approved in Japan against blood 
vessel obstruction. 

 Taken together, these results show the ability of drug 
networks in identifying novel applications for existing drugs, 
as well as to characterize novel molecules by looking at the 
known properties of their connected neighboring compounds. 

 
 
Fig. (1). Network analysis serves an integral role in systems approaches to drug discovery. High-throughput “OMIC” data acquisition from 
multiple levels of chemical and biological complexity can be integrated by network analysis. Interaction networks provide a global template 
for computational and mathematical systems modeling, simulation, and prediction. Nodes represent genes, proteins, small molecules or any 
other entities capable of interacting in the system being modeled. Edges connecting these nodes represent the physical interactions, genetic 
regulatory interactions and higher order relationships such as co-expression or some other shared properties linking the nodes. These 
networks can be assciated with each other. For example, Starting from this graph, it generates two biologically relevant network projections: 
the target–target network and the drug-drug network. Network topological parameters also provide foci and targets for hypothesis generation 
and experimental testing. Together, network-based approaches facilitate efforts in drug discovery and systems pharmacology. Some specific 
applications of these various network-based systems approaches are outlined in the text. 
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DRUG-TARGET INTERACTION NETWORKS 

 In the framework of network-based drug discovery, at the 
most basic level is the drug-target network, in which a drug 
and a protein are connected to each other if the protein is a 
known target of the drug. Such a network has been shown to 
form a bipartite graph with some natural characteristic 
features of its network topology. Based on the drug-target 
network, one can generate two biologically relevant network 
projections: the drug-drug network is typically constructed 
by linking two drugs if they share a number of targets or 
target-target network which comprises links between targets 
that are targeted by the same set of drugs. Yildirim et al. 
applied network analysis to FDA approved drugs and drug 
targets in the drug–target network revealing a rich network 
of polypharmacology interactions between drugs and their 
targets [9]. 

 Detection of compound–protein interactions with drug-
drug network is based on the hypothesis that similar ligands 
are likely to interact with similar proteins. However, in the 
drug-target network, the prediction can be performed based 
on drug space, target space and the topology of drug–target 
interactions. A straightforward statistical approach is to use 
binary classification methods where compound–protein pairs 
are trained as an input for machine learning classifiers 
including support vector machine (SVM) and neural network 
or the other statistical approach such as the distance learning 
in the framework of supervised bipartite graph inference [28-
30].  

 As one example of this utility, Yamanishi et al. [30] 
predicted drug–target interactions from the integration of 
chemical structure information, genomic sequence data and 
known drug–target network topology simultaneously on a 
large scale. The authors constructed the drug–target 
interaction network for each protein class using a bipartite 
graph representation and further investigated the correlations 
between the drug structure similarity, the target sequence 
similarity and the drug–target interaction network topology. 
Then the network was analyzed using a new supervised 
bipartite graph learning method to infer unknown drug–
target interactions by integrating chemical space and 
genomic space into a unified “pharmacological space” space. 
In the method, chemical space represents the chemical 
structure similarity space of chemical compounds, genomic 
space represents the protein sequence similarity space of 
different proteins and pharmacological space represents the 
interaction space reflecting the drug–target interaction 
network, where interacting drugs and target proteins are 
close to each other. The authors predicted novel drug–target 
interactions for four protein classes involving enzymes, ion 
channels, GPCRs and nuclear receptors. Moreover, the 
authors have included pharmacological effect of drug 
compounds into the computational model [31]. In this study, 
not only chemical and genomic data but also pharmacological 
data were used to predict unknown drug–target interactions 
on a large scale. Pharmacological effects of given compounds 
were firstly predicted by their chemical structures. Then, 
unknown drug–target interactions were identified based on 
the pharmacological effect similarity in the framework of 
supervised bipartite graph inference. The authors found 
that drug–target interactions are more correlated with 

pharmacological effect similarity than with chemical 
structure similarity. 

 Taken together, more integrative methods developed 
taking into account not only drug chemical structures and 
target protein sequences but also the available known drug–
target network information in the drug-target network. 
Moreover, during the past few years, the community 
developed many algorithms to specifically compare drug 
binding regions, which are now widely used in system-level 
applications in pharmacology [32].  

TARGET-TARGET NETWORKS 

 Here, target-target networks, also named biological 
networks or interactome mainly define the networks that can 
combine genome scale datasets with information about 
specific genes and proteins. In recent years, most attention 
has been directed towards protein interaction networks, 
where nodes are proteins that are linked to each other by 
physical (binding) interactions [33, 34]; metabolic networks, 
in which nodes are metabolites that are linked if they 
participate in the same biochemical reactions [35-37]; 
protein signaling networks, in which links represent the 
impact of transcription factors and other signaling molecules 
on downstream events including changes in gene expression 
and post-translational states of proteins [38]. They have 
provided insight into the origins of overall cellular behaviors 
and evolutionary design principles, as well as more focused 
fields of study concerning specific cell biological processes 
or diseases. With advances in network analysis tools and the 
advent of systems biology approaches, one can devise 
experimentally testable hypotheses ranging from prediction 
of novel functions of specific genes to genome scale 
properties of human cellular networks. In a similar manner, 
analysis of networks for pharmacologic studies provides 
better decision making for therapeutic interventions. 

 Recently, a series of increasingly sophisticated network-
based tools have been developed to predict potential disease 
genes, including linkage methods, disease module-based 
methods and diffusion-based methods [39]. 

 Linkage methods assume that the direct interaction 
partners of a disease protein are likely to be associated with 
the same disease phenotype. Oti et al. used this approach in 
the protein-protein network to predict disease genes for 
genetically heterogeneous hereditary diseases [40]. The 
authors hypothesized if disease proteins had interaction 
partners which were located within other loci associated with 
that same disease; such interaction partners were considered 
to be candidate disease genes. The results showed that 
exploiting protein–protein interactions can greatly increase 
the likelihood of finding positional candidate disease genes.  

 Disease module-based methods assume that the cellular 
components that belong to the same topological, functional 
or disease module have a high likelihood of being involved 
in the same disease [12, 41]. These methods start with 
identifying the disease modules and inspecting their 
members as potential disease genes. Lage et al. integrated 
quality-controlled interactions of human proteins with a 
validated, computationally derived phenotype similarity 
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score, to identify previously unknown complexes likely to be 
associated with diseases [12]. In the first step there is a 
virtual pull down of all the candidate proteins involved in a 
particular disorder. Each complex is named as the candidate 
complex. Second, proteins involved in disorders are 
identified from the candidate complex, and the pairwise 
similarity is determined by text mining. In the concluding 
step, scoring and ranking the candidates were carried out by 
the Bayesian predictor based on phenotypes associated with 
the proteins in the candidate complex.  

 Diffusion-based methods find the paths that are closest to 
the known disease genes. In these algorithms, “random 
walkers” are “released” and are allowed to diffuse along the 
links of the interactome, moving to any neighbouring node 
with equal probability. In this way, one can identify the 
nodes and links that are closest to the known disease genes, 
as they will be those that are most often visited by the 
random walkers. Proteins that interact with several disease 
proteins will gain a high probabilistic weight, as well as 
those that may not directly interact with any disease proteins 
but are in close network proximity to them. Vanunu et al. 
proposed a network-based method for prioritizing disease 
genes and inferring protein complex associations based on 
formulating constraints on the prioritization function that 
relate to its smoothness over the network and usage of prior 
information [42]. This method was applied to study prostate 
cancer, Alzheimer and type 2 diabetes mellitus and found 
several novel causal genes and protein complexes for further 
investigation. On the same data set, diffusion-based methods 
have the best predictive performance [43]. 

 In addition to the above methods that utilize the 
information that is encoded in the network topology as well 
as the placement of the known disease genes, recent studies 
have also included gene transcription changes and 3D 
structural interactions in the context of PPI networks [44, 
45]. The study of signaling networks also have potential to 
enhance our understanding of drug’s mode of action. There 
are multiple approaches to construct a mathematical model 
of a signaling pathway with different level including logic-
based models, Bayesian network and mass action model to 
study the effects of drug treatments and complex behaviors 
such as the synergistic combinations of drugs [46, 47]. 

 Genome-scale metabolic networks are designed to model 
metabolism at a cellular level. Flux Balance Analysis (FBA) 
is a constraint-based modeling approach that is suitable for 
modeling cellular metabolism [48]. FBA uses stoichiometric 
constraints and rates of extracellular metabolite uptake and 
production as input. In FBA, the metabolic network is 
modeled as a system in a pseudo-steady state as it assumes 
that the growth rate of a cell is constant. FBA does not 
require prior knowledge of enzyme kinetics and concentrations 
of intracellular metabolites. These models provide a 
framework for computationally interpreting rates of intracellular 
reactions. Recently, Li et al. have utilized the FBA method 
for the prediction of novel targets in the host pathogen 
network [49]. Folger et al. further used a human genome-
scale metabolic network to model cancer metabolism [50]. 
This model was used to predict new cytostatic drug targets 
that inhibit cancerous cell growth. The authors found that a 
total of 40% of the proteins, identified by this approach, 

were known anticancer drug targets thus demonstrating a 
potential application for drug discovery. In addition, the 
model has been successfully used for discovering 
combinations of synthetic lethal drug targets.  

DRUG-DISEASE NETWORKS 

 There are mainly two types of drug-disease networks: 
one network is to utilize knowledge of drug indications for 
disease to compose a directed graph connecting drugs to 
their indications, and the other is the network in which each 
node represents a drug (or disease) and each edge represents 
a significant similarity or “anti-similarity” in cellular expression 
profiles between drug and disease nodes. 

 For example, Gottlieb et al. proposed a computational 
approach PREDICT that utilizes multiple drug–drug and 
disease–disease similarity measures to directly predict novel 
drug-disease associations for both FDA approved drugs and 
experimental molecules on a large scale [51]. Their approach 
was designed in three phases. Firstly, authors constructed 
five drug-drug similarity measures and two disease-disease 
similarity measures. Then, they analyzed these similarity 
measures to build classification features and subsequent 
learn classification rule that can distinguish between true and 
false drug-disease associations by using these similarity 
measures. And finally authors applied a logistic regression 
classifier to predict any new possible drug-disease 
associations. Thus for a given drug-disease association from 
the gold standard (experimentally curated list of drug-disease 
interactions), the authors computed an association score by 
considering all the other known drug-disease association. In 
addition, Nacher et al. constructed a bipartite graph in which 
drug nodes are connected to their therapeutic indications 
[43]. The authors generated two biologically relevant 
network projections: a network of drugs connected if they 
are used for similar indications and a network of diseases 
connected if they are treated with the same drugs. Based on 
these networks, the authors found diseases clustered based 
on their treatments as well as treatments clustered based on 
the diseases. Authors calculated the topological importance 
of the drugs in the network and found that certain drugs, with 
multiple targets, are used to treat distinct diseases in different 
parts of the network.  

 Based on the cellular expression profiles, drug-disease 
networks rely on direct comparison between the molecular 
activity signatures of drugs with those of a disease state. If 
the gene expression profile of a drug is significantly anti-
similar with that characterizing a disease state, it can be 
hypothesized that the drug could “revert” the disease state, 
hence the disease phenotype [52]. Hu and Agarwal [53] 
created a drug-disease network using publicly available gene 
expression profiles, and integrated this network with molecular 
profiles and knowledge of drugs and drug targets to infer 
novel drugs for diseases, whose relationships were not been 
previously known. They began by extracting disease-relevant 
expression data sets from the NCBI Gene Expression 
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) and 
computed differential gene expression profiles to find drugs 
and diseases that clustered together by their gene expression 
profiles. Similar efforts using the text mining and microarray 
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data involved in drugs and diseases have also been successful 
predict drug-disease associations in a more contextualized 
view that is provided by network biology [54]. 

TARGET-DISEASE NETWORKS 

 The target-disease network is a bipartite graph that 
connects diseases and their therapeutic targets. This network 
helps not only understand the similarity and difference in 
treating different diseases but also explore the potential 
therapeutic effects for drug compounds of the certain targets. 
Our group has built the connection between the ingredients 
of various Chinese medicines and their related diseases via 
the target–disease network [55-58]. For example, Li et al. 
[57] collected potential targets of compounds in Compound 
Danshen Formula (CDF), a widely used Traditional Chinese 
Medicine (TCM) applied in clinical treatment of cardiovascular 
diseases, from the PharmGkb, TTD and DrugBank 
databases, and the obtained disease-target interactions were 
used to build the target-disease Network. Based on the 
assumption that certain drugs acting on same protein 
associated with different diseases in a network may cause 
different diseases, the authors further applied the network to 
find some novel therapeutic effects of CDF. 

 With similar process, we can also construct gene-disease 
network consisting of two disjoint sets of nodes: one set 
corresponds to disorders and the other set corresponds to all 
disease-related genes in the human genome. The most 
complete and best-curated list of known phenotype-gene 
associations is maintained in the Morbid Map (MM) of the 
Online Mendelian Inheritance in Man (OMIM) [59]. Each 
entry of the MM is composed of four fields, the name of the 
disorder, the associated gene symbols, its corresponding 
OMIM id, and the chromosomal location. Each entry of the 
MM is composed of four fields, the name of the disorder, the 
associated gene symbols, its corresponding OMIM id, and 
the chromosomal location. Goh et al analyzed the complete 
data set available in the OMIM database and used the 
phenotypic information and disease associated genes to 
construct a gene-disease network [60]. Starting from the 
diseasome bipartite graph, authors generated two biologically 
relevant network projections the “human disease network‟ 
nodes represent disorders, and two disorders are connected 
to each other if they share gene in which mutations are 
associated with both disorders. In the “disease gene 
network” nodes represent disease genes, and two genes are 
connected if they are associated with the same disorder. In 
this study, disease genes were found to show significant 
functional clustering in the studied network suggesting the 
existence of disorder-specific functional modules. Furthermore, 
Anna et al., included mendelian, complex and environmental 
diseases in an integrated gene-disease network and showed 
that the concept of modularity applies for all of these 
diseases [61].  

 In addition, gene–disease network can also be applied for 
drug repositioning based on genome-wide association studies 
(GWAS; http://www.genome.gov/gwastudies) [62].Sanseau 
et al compiled GWAS gene–disease associations and found 
out the “druggable” targets by small molecules in these 
genes, thereby connecting drugs with GWAS diseases. The 

authors hypothesized that if drugs have the same or closely 
related indication to the GWAS traits; it increases confidence 
in the pursued indication. Conversely, drug with indications 
different from the GWAS traits represent drug repositioning 
opportunities. 

DISEASE-DISEASE NETWORKS 

 During these years, huge efforts have been devoted to the 
use of networks (disease network) to integrate different 
genetic, proteomic, metabolic and phenotypic datasets to 
elucidate the entangled origins of many diseases [53, 63, 64]. 
The disease-disease network is constructed by connecting 
two disorders if they have similar treatment or molecular 
profiles. The systematic identification of such network-based 
dependencies among cardiovascular disorders offers a 
sufficient resolution and specificity for etiologic heterogeneity 
and clinical treatment of diseases. Indeed, huge efforts have 
been devoted to the use of disease networks (diseasome) to 
integrate different genetic, proteomic, metabolic and 
phenotypic datasets to elucidate the entangled links of 
diseases [65, 66]. Uncovering such links between diseases 
could help understand how and why different disorders are 
linked at the molecular level and also aid drug discovery, in 
particular when it comes to the use of approved drugs to treat 
molecularly linked diseases.  

 Chiang et al. performed a network-based, guilt by 
association approach to discover novel drug indications 
based on the shared treatment profile from any disease pairs 
The authors built 5,549 disease-disease associations if two 
diseases shared at least one FDA approved drug in common. 
For each disease pair, those drugs that were used against 
only one of the two may also be therapeutic for the other 
disease. Novel drug-indication associations could be inferred 
by associating drugs with novel indications by expanding 
from simple pairs into network clusters. Finally, by using a 
guilt-by-association approach, the authors generated 
approximately 57,000 robust novel drug uses, of which, a 
number of novel drug uses were found to be highly enriched 
in clinical trials, indicating external validation of these 
predictions.  

 Goh et al. generated disease network by connecting two 
disorders if they are associated with the same genes and 
demonstrated the existence of these widespread molecular 
connections between linked diseases. Furthermore, Park et 
al. found statistically significant correlations between the 
underlying structure of cellular networks and disease 
comorbidity patterns in the human population [66]. The 
authors showed that two disease pairs in which the network-
based information offers a plausible mechanism for 
statistically significant comorbidity patterns. In addition, Lee 
et al. demonstrated that metabolic diseases can be also 
organized in a metabolic disease network if the enzymes and 
their associated diseases are linked through metabolic 
pathways [64]. This study found that metabolic diseases 
connected through shared pathways tend to show significant 
comorbidity. 

 Similarly, disease networks can also be built based on the 
cellular expression profiles. Gene coexpression analyses 
have identified shared candidate genes that associate normal 
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myocardial development to myocardial hypertrophy and 
failure [68], and revealed novel molecular connections 
between Alzheimer disease and cardiovascular diseases [69]. 
More recently, Rende et al. constructed a cardiovascular 
disease functional linkage network that carries significant 
interconnections among modules representing cardiovascular 
diseases with other complex disorders such as infection by 
Listeria monocytogenes, myasthenia gravis, hemorrhagic 
diatheses, and protein S deficiency [70].  

CONCLUSION 

 Network approaches allow biomedical researchers to 
rapidly organize current knowledge by integrating different 
types of large datasets to systematically descript drug action, 
identify novel medications and understand complex diseases. 
In this article, we have highlighted a variety of fundamental 
network analysis approaches, which are being used to 
facilitate drug discovery. One point should be emphasized is 
that these types of networks are not independent but are 
interrelated to each other. The integrated network analyses 
are critical to systems biology and pharmacology to uncover 
previously unknown relationships. For example, Hu et al. 
has reported a integrative network platform named VisANT 
that allows users to construct 11 different types of networks 
based on the disease and therapy hierarchy, disease–gene and 
therapy–drug associations to analyze the correlations 
between disease, therapy, genes and drugs systematically 
[71]. In addition, there are still large gaps in our knowledge 
that prevent us from reconstructing the ultimate drug 
discovery network. The fidelity of network is limited by the 
lack of sufficient and high-quality data. There are still many 
other factors such as environmental stress, epigenetic 
modifications and invasion of pathogens also contribute to 
diseases. Incorporating these factors will further improve the 
coverage and significance of the networks [72]. In addition 
to the static network analysis, the dynamic networks are 
more important, should be better integrated in the follow-up 
studies [73]. As methodologies evolve, the systems network 
methodology is believed to provide a complete picture that 
allows us to appreciate the networked nature of human 
diseases, to design new pharmacological models and then to 
guide the experiments to new drug discovery and disease 
treatment.  
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