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1. INTRODUCTION

As the most frequent cause of death in the world today,
cardiovascular and cerebrovascular diseases are often a conse-
quence of an arteriosclerotic process with a complex background.
Atherosclerosis is a diffuse process that starts early in childhood
and progresses asymptomatically through adult life. Later in life,
it is clinically manifested as coronary artery disease, stroke,
transient ischemic attack, and peripheral arterial disease.1,2

Approaches that retard or even reverse atherosclerotic lesion
development in humans for prevention of plaque disruption and
acute coronary events include better control of risk factors, such
as reducing the plasma cholesterol levels. Nevertheless, even
when the atherosclerotic plaque disruption cannot be prevented,
a beneficial effect of antiplatelet and anticoagulant agents has
been observed in the prevention of acute coronary events.
Currently, the most widely used antiplatelet agents are aspirin,
dipyridamole, glycoprotein IIb/IIIa antagonists, and thieno-
pyridines.3 However, these drugs also have several limitations.
For example, in patients with vascular disease aspirin was less
efficacious than clopidogrel. For the latter, despite its effective-
ness, clopidogrel negatively affects its clinical efficacy. The active
metabolite of clopidogrel irreversibly and selectively inhibits the
adenosine diphosphate (ADP) receptor. Once the receptor is
activated, the drug will irreversibly bind to platelets. Consequently,
clopidogrel has a slow onset and slow offset of pharmacological

action.4,5 For example, in some acute settings, such as suffering
from bleeding or a trauma and requiring emergency surgery, it is
difficult for clopidogrel to deal with. In addition, for those people
who are resistant to the effects of clopidogrel,6 this drug will be
also less helpful. Therefore, intensive efforts have been devoted
toward the discovery of innovative antiplatelet agents that are
more potent and safe, direct acting, and orally bioavailable, which
would be paramount to meeting the demands of the urgently
needed therapeutic weapons against the ADP receptor.

ADP is an important platelet agonist, where even minute
concentrations can induce rigid platelet aggregate formation.7 Its
crucial roles in modulating the thrombosis and hemostasis were
rapidly recognized,8 but the molecular identity of its receptors
remained for a long time elusive. P2Y1 and P2Y12, as two important
P2Y receptors, moderate the effect of ADP on platelets. The
Gq-coupled P2Y1 receptor

9 is responsible for a transient rise in
Ca2+, while the Gi-coupled P2Y12 receptor10 refers to the
inhibition of adenylate cyclase, and both of them are implicated
in the transduction of the ADP signal. For normal platelet aggre-
gation,11 it requires simultaneous activation of the Gq and Gi

pathways by ADP. Among them, activation of the Gq pathway
through P2Y12 causes the changes of the platelet shape and a
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We hope the developed models could provide some instructions for further synthesis of highly potent P2Y12 antagonists.
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rapidly reversible wave of platelet aggregation. While activation
of the Gi pathway mediated by P2Y12 magnifies the Gq-mediated
responses and alone leads to slowly progressive and lasting
aggregation. In addition, the P2Y12 receptor can not only inhibit
the adenylate cyclase and the subsequent reduction in intracel-
lular cAMP content but also activate the glycoprotein IIB/IIIa
integrin through a phosphoinositide 3-kinase pathway and/or
another unidentifiedG protein. Therefore, P2Y12 receptor has an
important role in the irreversible wave of platelet aggregation that
occurs on exposure to ADP. Experimental studies have shown
that selective blockade of either receptor is enough to inhibit the
platelet activation. However, P2Y12 is a platelet specific receptor,
whereas P2Y1 is ubiquitous expression, which makes P2Y12 a
more promising therapeutic target for selective modulation of
ADP-induced platelet activation.

The P2Y12 gene, which encodes the 342 amino acid receptor,
was recently identified.10 It will be a great advantage for discovery
of novel antiplatelet drugs if we know the structure of P2Y12.
However, as amembrane protein, it is very difficult to achieve this
aim with experimental approaches. As an alternative, the quick
development of molecular modeling methods has provided us
with unprecedented power to those investigations in both the
fundamental and industrial researches.12 In light of this, Costanzi
and co-workers13 constructed an architecture of P2Y nucleotide
receptors by homology to bovine rhodopsin. Based on the built
P2Y receptor, they also performed a docking research. More
recently, Deflorian and Jacobson14 have compared three homology
models of P2Y12 based on different G-protein-coupled receptor
(GPCR) structural templates including bovine rhodopsin, human
A2A adenosine receptor and human C�X�C chemokine receptor
type 4. Taking into account all available pharmacology and muta-
genesis researches, it can be concluded that C�X�C chemokine
receptor type 4 based structure of P2Y12 is the most accurate one,
which will be helpful for the further research.

Since P2Y12 has been identified a promising target to anti-
platelet drugs, recently many classes of ADP receptor antagonists
including prasugrel,15 ticlopidine,16 ticagrelor,17 cangrelor,18

2-alkylthio-substituted analogues,19 6-amino-2-mercapto-3H-
pyrimidin-4-one derivatives,20 piperazinyl-glutamate-pyridines/
pyrimidines-based antagonists,21�24 piperazinyl-glutamate-
quinolines,25�27 anthraquinones,28 adenosine analogues,29 pi-
perazinyl-pyridine ureas,30 etc. were synthesized, some of which
achieved promising inhibition potency, and others were currently
in late-stage clinical trials. In spite of these encouraging advances,
the development of antiplatelet drugs still remains a difficult task
for researchers. To facilitate the drug discovery process, in silico
modeling approaches31�35 as a productive and cost-effective tech-
nology in design of novel lead compounds should be used in com-
bination with experimental practices.36�39 In view of this, Fujita’s
group has carried out excellent work to study the P2Y receptor using
both the in silico and experimental methods.40�42 In addition, our
group also used two-dimensional quantitative structure�activity
relationship (2D-QSAR) to predict series of P2Y12 antagonists
using a novel genetic algorithm-support vector machine coupled
approach.43 As we know, inmany cases, 2D-QSAR often focuses on
the predictive models44�48 in which gaining an intuitive interpreta-
tion of important features from this 2D-QSAR study is not always
simple. And it is also difficult to present a comprehensive feature for
the ligand�receptor interactions, such as the hydrophobic contact,
polar interactions between the key amino residues and agents.

Thus in the present work, a total of 397 piperazinyl-glutamate-
pyridines/pyrimidines-based antagonists of P2Y12 were collected

to build 3D-QSAR models using comparative molecular field
analysis (CoMFA)49 and comparative molecular similarity in-
dices analysis (CoMSIA) methods.50 The reliability and robust-
ness of the developed best models were estimated with boot-
strapping analysis and 10-fold cross-validation. And the predictive
abilities of the obtained models were validated statistically with
an external test set of compounds. In addition, a combined com-
putational approach including the docking analysis and molec-
ular dynamics (MD) simulation was also employed to elucidate
the probable binding modes of these antagonists at the binding
site of the P2Y12 receptor. The good concordance between the
3D contour maps and the docking result provides our identifica-
tion of several key features of the binding mechanism for these
piperazinyl-glutamate-pyridines/pyrimidines-based antagonists.
Until recently, to our best knowledge, this is the first 3D-QSAR
report for this set of compounds, and we hope the developed
models could provide somemeaningful clues in the future synthesis
of highly potent and orally bioavailable P2Y12 antagonists.

2. METHODS AND COMPUTATIONAL DETAILS

Data Set and Biological Activity. Eliminating those com-
pounds with unspecified antagonistic activity and redundant
structures, a total of 397 piperazinyl-glutamate-pyridines/pyri-
midines as potent P2Y12 antagonists for inhibition of platelet
aggregation was collected from the continuous work of Parlow
et al and used as the data set for molecular modeling in this
study.21�24 In this work, the in vitro biological activities of these
compounds were converted into the corresponding pKi (�log
Ki) values, which were used as dependent variables in the current
QSAR analyses. The collected compounds were divided into a
training set (including 317 compounds) and a test set (including
80 compounds) in an approximate ratio of 4:1. All structures and
theKi values of the data set against P2Y12 receptor as well as their
belongings to the training or test set are listed in Table S1
(Supporting Information). The principle for selection of the test
set chemicals was to ensure that both their pKi values are
randomly but uniformly distributed in the range of the values
for the whole set, and their structures cover as large a diversity as
possible of the data set. Table 1 depicts several representative
skeletons and Ki values (nM) of the data set.
Molecular Modeling. All molecular modeling and 3D-QSAR

studies were performed using the SYBYL6.9 molecular modeling
software package (Tripos Associates, St. Louis,MO). Partial atomic
charges were calculated by the Gasteiger�Huckel method,51 and
energy minimization and conformational search were performed
using Tripos molecular mechanics force field52 by the Powell
method with a convergence criterion of 0.05 kcal/mol 3Å with
the maximum iterations set to 2000.
Molecular Alignment.Molecular alignment of compounds is

a crucial step in the development of 3D-QSAR models.53 It was
assumed that each molecule binds into the active site in a similar
mode, since these compounds share a common scaffold. To
derive the best possible 3D-QSAR statistical model, three different
superimposition rules were investigated. Initially, the ligand-
based superimposition (superimposition I) using database align-
ment technology was adopted. During the process, the most
potent antagonist (compound 316) was chosen as a template to
fit the remaining training and test sets of compounds by using the
substructure-alignment function available in SYBYL. Figure 1A
describes the common substructure for the alignment, which is
marked in bold. Figure 1B shows the resulting superimposition
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I model. Superimposition II is the docking-based alignment which
is shown in Figure 1C. The conformation with the highest total
score for each ligand of data set was aligned automatically
together inside the binding pocket of P2Y12 and used directly
for CoMFA and CoMSIA research. Superimposition III is a
common scaffold-based alignment same as superimposition I but
with all molecular conformations obtained from the superimpo-
sition II. And the final superimposition is shown in Figure 1D.
CoMFA and CoMSIA Field Calculation. The CoMFA and

CoMSIA models were generated by using SYBYL 6.9 with the
default parameters. Detailed algorithms of CoMFA and CoMSIA
can be easily referred to many literatures,54,55 thus we only
introduce the modeling parameters in this article.
To derive the CoMFA and CoMSIA descriptor fields, the

aligned training set molecules were placed in a 3D cubic lattice
(18� 15� 14 = 3780 grid points) with grid spacing of 2 Å in x, y,
and z directions such that the entire set was included in it. In
CoMFA, the steric and electrostatic fields were calculated
separately for each molecule using sp3 carbon as the probe atom
with a charge of +1.00 (default probe atom in SYBYL) and

energy cutoff values of 30 kcal/mol for both the steric and
electrostatic fields. The CoMFA fields generated automatically
were scaled by the CoMFA-STD method in SYBYL. CoMSIA
similarity index descriptors were derived according to Klebe
et al.50 with the same lattice boxes as used in CoMFA calcula-
tions. In CoMSIA, the steric, electrostatic, hydrophobic, and
hydrogen bond (H-bond) donor and acceptor descriptors were
calculated using a probe atom of radius 1.0 Å, charge +1.0, and
hydrophobicity +1.0. A Gaussian function was used to evaluate
the mutual distance between the probe atom and each molecule
atom. Because of the different shape of the Gaussian function,
CoMSIA similarity indices (AF) for molecule j with atom i at grid
point q were calculated by equation

Aq
F, kðjÞ ¼ �∑ωprobe, kωike

�αr2iq ð1Þ

where k represents the steric, electrostatic, hydrophobic, or
H-bond donor or acceptor descriptor; ωprobe,k is the probe atom
with radius 1.0 Å, charge +1, hydrophobicity +1, H-bond
donating +1, and H-bond accepting +1; ωik is the actual value

Table 1. Representative Structures and Binding Activities for a Set of 397 P2Y12 Antagonists with Diverse Structures

*Denotes a test set.



2563 dx.doi.org/10.1021/ci2002878 |J. Chem. Inf. Model. 2011, 51, 2560–2572

Journal of Chemical Information and Modeling ARTICLE

of the physicochemical property k of atom i; and riq is the mutual
distance between the probe atom at grid point q and atom i of the
test molecule. The default value of 0.3 was used as attenuation
factor (α).
Molecular Docking. Docking simulations of piperazinyl-glu-

tamate-pyridines/pyrimidines into the P2Y12 binding pocket
were performed using the Surflex-dock module of SYBYL
package in this study. Surflex-dock utilizes a so-called “whole”
molecule alignment algorithm based on morphological similarity
between the ligand and target.56 The docking method aligns the
ligand to a “protomol” or idealized ligand in the active site of the
target. The detailed algorithm for Surflex-dock is presented in the
literature.57 For our studies, the coordinate of P2Y12 was
obtained from Jacobson’s homology modeling.14 In this article,
the P2Y12 homology model has been successfully established
based on the human C�X�C chemokine receptor type 4.14

Prior to the docking, the ligand and substructure were extracted
from the crystal structure, and hydrogen atoms were added to the
protein in standard geometry using the biopolymer modulators.
In this study, automatic-based mode was adopted to generate the
protomol in the Surflex-dock program, and two parameters that
significantly affect the size and extend of the protomol generated
are the threshold and the bloat values. In the present work, the

threshold and bloat values were set to 0.5 and 0, respectively.
During the present molecular docking process, the protein was
considered to be rigid, and the ligand molecules were flexible.
Other parameters were established by default values in the
software. In the current work, 20 conformations were obtained
though Surflex-dock for each ligand, and all conformations were
extracted from the optimized antagonist�P2Y12 complex. The
conformations with the highest total scores for each ligand of
the training set were aligned automatically together inside the
binding pocket of P2Y12 and used directly for CoMFA and
CoMSIA analyses to explore the interactions between the ligands
and P2Y12.
MD Simulations. The MD simulations were performed with

GROMACS software package58 using the GROMOS96 force
field.59 The molecular topology file for the ligand in protein was
generated by the program PRODRG 2.5.60,61 The simulation cell
was a cubic periodic box with a side length of 114.32 Å, and the
minimum distance between the protein and box walls was set to
larger than 10 Å. In order to neutralize the total charge, 22
chloridion ions were placed randomly in the box. The total
number of the atoms of the simulation system was 149 736,
including the protein complexes and waters. The remaining box
volume was filled using the simple point charge (SPC) water.

Figure 1. The alignment of all molecules in the data set. (A) Compound 316 is used as the template for ligand-based alignment. (B�D) present the
alignments from the superimposition I, II, and III, respectively.
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Prior to the simulation, an energy minimization was applied to
the full system without constraints using the steepest descent
integrator for 9896 steps, then the system was equilibrated via a
200 ps MD simulation at 300 K. Finally, a 5 ns simulation was
performed with a time step of 2 fs. During MD simulation, the
standard parameters and main calculation methods were set as
follows: The model used NPT ensemble at 300 K with periodic
boundary conditions, the temperature was kept constant by the
Berendsen thermostat, the values of the isothermal compressi-
bility were set to 4.5 � 10�5 bar�1 while the pressure was
maintained at 1 bar using the Parrinello�Rahman scheme,62

electrostatic interactions were calculated using the particle mesh
Ewald method,63,64 and cutoff distances for the calculation of
Coulomb and van der Waals interactions were 1.0 and 1.4 nm,
respectively. All theMD simulations lasted 5 ns to ensure that the
whole systems were stable.
3D-QSARModels Calculation and Statistical Validation. In

order to generate statistically significant 3D-QSAR models,
partial least-squares (PLS) regression was used to analyze the
training set by correlating the variation in their pKi values (the
dependent variable) with variations in their CoMFA/CoMSIA
interaction fields (the independent variables). PLS is a statistical
approach that generalizes and combines features from principal
component analysis and multiple regressions.65,66 It is particu-
larly useful to predict a set of dependent variables from a large set
of independent variables and when the matrix of predictors has
more variables than observations.
To evaluate the reliability of the models generated from the

PLS analysis, cross-validation analysis was accomplished with the
leave-one-out (LOO)methodology, wherein one compoundwas
moved away from the data set and its activity was predicted by the
model derived from the rest of the data set. A cross-validated

correlation coefficient, Q2 (also called R2cv), was subsequently
obtained and provided as a statistical index of the predictive
power. Then, a noncross-validation analysis was carried out, and
the Pearson coefficient (R2ncv) and standard error of estimates
(SEE) were calculated based on the obtained optimal principal
components by cross-validation. Finally, the CoMFA/CoMSIA
results were graphically represented by field contourmaps, where
the coefficients were generated using the field type “StDev*-
Coeff”. The cross-validated coefficient, Q2, was calculated using
the following equation:

Q 2 ¼ 1�
∑
train

i¼ 1
ðyi � ŷiÞ2

∑
train

i¼ 1
ðyi � y̅trÞ2

ð2Þ

where yi, ŷi, and ytr are the observed, predicted, and mean values
of the target property (pKi), respectively, for the training set.
In order to evaluate the real predictive ability of the best

models generated by the CoMFA/CoMSIA analyses using the
training set, the pKi values of 80 compounds were treated as
the external validation set. A predictive R2

pred value was then
obtained with the following formula:

R2
pred ¼ 1� PRESS

SD
ð3Þ

where PRESS is the predictive residual sum of squares for the test
set and SD denotes the sum of squared deviation between the
biological activities of the test set molecules and themean activity
of the training set molecules.

Figure 2. SOM topmap indicating the distribution of the training and external prediction sets. The training set is labeled in black dot and the prediction
set in red asterisk.
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3. RESULTS AND DISCUSSION

Split the Training and Test Sets. Rational selection of
training and test sets is one of the important and challenging
steps for the development of validatedQSARmodels.67,68 A basic
rule to implement such selection is to guarantee that the points of
the training set are distributed evenly within the whole area
occupied by representative points and that the closeness condi-
tion of the test set points to the training ones is satisfied.69 In the
current work, to investigate the descriptor space, totally 929 2D
descriptors were calculated using the Dragon software package
(Dragon Professional, version 5.4) for each P2Y12 antagonist.
Then these original Dragon molecular descriptors were under-
taken a preprocessing process as follows: (1) those descriptors
containing larger than 85% zero values were removed; (2) zero
and near-zero variance predictors were removed because such
descriptors may cause the model to crash or the fit to be unstable;
and (3) one of the two descriptors that has the absolute
correlation above 0.95 was omitted. After these steps, the number
of the original descriptors was reduced to 237 for further self-
organizing map (SOM) research.
As a special kind of neural network that can be used for

clustering, visualization, and abstraction tasks, SOM is especially
suitable for data survey due to its prominent visualization
properties, as illustrated by our previous work of data set
splitting.70,71 SOM creates a set of prototype vectors represent-
ing the data set and carries out a topology preserving projection
of the prototypes from the d-dimensional input space onto a low-
dimensional grid, which is a convenient visualization space for
showing the cluster structure of the data. In the present work, the
construction of the training and test sets was made based on the
SOM visualization of the whole data.72 A small Kohonen net-
work with 6 * 6 = 36 neurons was employed, producing a map
with 36 positions. All the compounds with 237 molecular
descriptors were placed onto the 36 positions (neurons) of the
Kohonen map. The distribution of the molecules is demon-
strated in Figure 2, where the training set is labeled in black dot
and the prediction set in red asterisk, respectively. The purpose
we performed the SOM simulation on the data set is to guarantee
that the representative points of the training set are, on one hand,
distributed evenly within the whole area of the descriptor space
occupied by the data set and, on the other hand, close to those of
the test set, which ensures the reliability of the simulation results.
In addition, it should be noted that the biological activity
distribution is a crucial factor to the selection of training and
test sets. For the present work, the training and test sets both
present a uniform distribution with average activity of 8.022 and
8.026, respectively. All these results indicate that the split of the
data set is rational.
CoMFA and CoMSIA Statistical Results. To judge whether a

QSAR model is reliable fitting for prediction of unknown
molecules, several statistical parameters including especially the
cross-validated correlation coefficient (Q2), noncross-validated
correlation coefficient (R2ncv), and standard error of estimate
(SEE), and F statistic values as well as the optimum number of
components (OPN) should be evaluated. For the P2Y12 3D-
QSAR studies, good correlations were observed in the obtained
CoMFA and CoMSIA models demonstrated by the high values
of Q2 and other statistical results. Table 2 summarizes the
statistical results of the CoMFA and CoMSIA analyses.
During the molecular modeling process of pKi, 317 com-

pounds out of the total 397 P2Y12 receptor antagonists were used

as the training set, and the remaining 80 compounds were used as
test set to validate the developed models. As it is known, the
CoMFA and CoMSIA models are alignment sensitive, with the
quality and the predictive ability of the models directly depen-
dent on the alignment rules,73 and differences in the statistical
values are observed with different superimpositions. As seen
from Table 2, superimposition I, in both CoMFA and CoMSIA
models, gives the better statistical results than those obtained
from superimpositions II and III. Thus, our main analysis was
restricted to the superimposition I model for the prediction of
P2Y12 antagonists, which presents Q2 = 0.571 with six principal
components, R2ncv = 0.814, SEE = 0.301, and F value of 225.527
for CoMFA model. It is noted that for this model, the steric
feature is found to make slightly higher contribution (55.7%) to
the P2Y12 antagonist activity than that of the electrostatic feature
(44.3%).
When building the CoMSIAmodels, the data sets are the same

as those used in establishing the CoMFA ones. Since the five
descriptors (steric, electrostatic, hydrophobic, and H-bond do-
nor and acceptor) are not completely independent of each other
and since such dependency among individual fields may reduce
themodel significance and generalization,65,74 all 31 possible des-
criptors’ combinations were calculated with their respective Q2

value using the optimum number of components, for estimating

Table 2. Optimal CoMFA and CoMSIA Results Based on
Different Superimposition Methodsa

Superimposition Methods

I II III

PLS analysis CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA

Q2 0.571 0.592 0.161 0.330 0.144 0.281

OPN 6 8 4 5 5 5

R2ncv 0.814 0.834 0.644 0.539 0.740 0.635

SEE 0.301 0.284 0.414 0.472 0.354 0.420

F value 225.527 193.930 141.111 72.581 177.444 108.121

R2bs 0.850 0.880 0.770 0.620 0.841 0.733

SEEbs 0.269 0.240 0.331 0.430 0.277 0.359

R2cv(mean) 0.570 0.589 0.149 0.320 0.123 0.259

R2pred 0.664 0.668 0.172 0.282 0.179 0.358

Relative Contribution (%)

S 55.7 22.1 39.1 100 53.8 57.7

E 44.3 28.6 60.9 � 46.2 �
H � 30.0 � � � �
D � � � � � �
A � 19.3 � � � 42.3

a Q2, cross-validated correlation coefficient after the LOO
procedure. OPN, optimal number of principal components.
R2ncv, noncross-validated correlation coefficient. SEE, standard
error of estimate. F, the value of F statistic. R2bs, the average R

2

value from a bootstrapping analysis for 100 runs. SEEbs, the
average SEE value from a bootstrapping analysis for 100 runs.
R2cv(mean), the average R

2
cv from 10 times 10-fold cross-valida-

tion. R2pred, predicted correlation coefficient for the test set of
compounds. Superimposition method: I, from the database
alignment; II, from docking alignment; and III, from database
alignment based on the docking conformations.
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which one of the five CoMSIA fields is actually needed for the
generation of a predictive model. Finally, the model with steric,
electrostatic, hydrophobic, and H-bond acceptor fields appears
to be superior among all the models derived. For the optimal
CoMSIA model based on the superimposition I, it gives the
statistical results of Q2 = 0.592, R2ncv = 0.834, SEE = 0.284, and
F = 193.930 based on the use of eight optimum components. In
this case, the steric, electrostatic, hydrophobic, and H-bond
acceptor fields contribute 22.1, 28.6, 30, and 19.3%, respectively.
In addition to the LOO cross-validation, the cross-validation

in groups using 10 groups repeating the procedure 10 times was
also carried out. The mean of 10 readings was given as R2cv(mean).
To further assess the robustness and statistical confidence of the
derived models, a bootstrapping analysis for 100 runs was
performed. Here, we just report the average R2 and SEE values
of these 100 analyses (namely, R2bs and SEEbs, respectively).
Bootstrapping involves the generation of many new data sets
from the original data set and is obtained by randomly choosing
of samples from the original data set. The statistical calculation is
performed on each of these bootstrapping samplings. The
difference between the parameters calculated from the original
data set and the average of the parameters calculated from the
many bootstrapping samplings is a measure of the bias of the
original calculations. Table 2 illustrates all corresponding results,
where the R2bs and SEEbs values are 0.850 and 0.269 for the best
CoMFA model as well as 0.880 and 0.240 for the best CoMSIA
model based on the superimposition I, respectively, proving the
robustness of the present models. Besides, the R2cv(mean) values
for both the CoMFA andCoMSIAmodels also present 0.570 and
0.589, respectively, indicating highly statistical significance.
As a further test of robustness of the CoMFA and CoMSIA

models, we also randomized the target values for 50 times. As a
result, none of those models had significantQ2. TheQ2 obtained
were in the range from �0.204 to 0.01 for CoMFA and from
�0.214 to 0.014 for CoMSIA, respectively. This indicates that
the Q2 in both the optimal CoMFA and CoMSIA models with
original data is not due to chance correlations.
Validation implies a quantitative assessment of the robustness

and predictive power of a QSAR model. This predictive power
can be defined as the model’s capability to predict accurately the
modeled property of new compounds. In general, a Q2 > 0.5 is
considered proof of the acceptable internal predictive ability. It is
also reported that the high value ofQ2 appears to be the necessary

but not the sufficient condition for the model to have a high
predictive power. Thus, the external validation becomes a
necessary way to establish a reliable QSAR model.75 For the
present work, an external test set including 80 compounds was
used to validate the model, which exhibits the R2pred of 0.664 and
0.668 for the CoMFA and CoMSIA models based on the
superimposition I, respectively.
Outliers from a QSAR are compounds that do not fit the

model or are poorly predicted by it.76 Many reasons may account
for the presence of outliers from a QSAR. Typically, however,
such compounds have been recognized as acting by a different
mechanism of action from other compounds which may be well
modeled by the QSAR. When performed correctly, removal of
significant outliers will allow for the development of stronger and
more significant models. Thus, one should perform an outlier
check test in the built models. However, in the present work, after
establishment of the models, no outliers are found in both the
training and test sets based on the optimal superimposition I
models, despite that they are built based on an unusually large of
397 P2Y12 antagonists. Figure 3 depicts the correlations between
the experimental and the predicted activities for both the training
and test sets for the optimal CoMFA and CoMSIA models,
respectively. Clearly, a good agreement between the predicted
activities and experimental data was observed, and all the points
are rather uniformly distributed around the regression line,
suggesting the satisfactory predictive capability of the models.
The predicted values by the two optimal CoMFA and CoMSIA
models are shown in Table S2 (Supporting Information).
Contour Maps. The optimum CoMFA and CoMSIA models

from superimposition I are selected to construct the StDev*Coeff
contour maps to view the field effects on the target features. To
aid in visualization, compound 316, as the most active P2Y12
antagonist in the series, is shown superimposed with the CoMFA
and CoMSIA contour maps as depicted in Figures 4 and 5.
CoMFA Contour Maps. The CoMFA result is usually repre-

sented as 3D coefficient contour. It shows regions where varia-
tions of the steric and electrostatic nature in the structural
features of the different molecules contained in the training set
cause the increase or decrease in the activity. For steric fields,
Figure 4A shows the contour map of sterically favored (green)
and disfavored (yellow) regions. A large green-colored contour is
mapped near the distal position of butyl carbamate on the
piperazine nitrogen, suggesting that bulkier groups are favored

Figure 3. Predicted versus actual pKi for the optimal (A) CoMFA and (B) CoMSIA models based on the superimposition I. The training set is marked
in black dot and test set marked in red asterisk.
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at the position. However, it can be noted that at the back of the
green contour there is also a yellow-colored map. Therefore for
this position, a careful selection of the carbon chain length is
required. The fact that compound 316 (having �Bu at this
position) is more potent in activity than compound 317 (with�
Pent at the same location) is a good example. And it is the same
case for the comparisons between compounds 318 and 319 and
compounds 297 and 298 as well as compounds 308 and 309.

Around the carbonyl close to the piperazine ring, it is noted that
there is a semicircle yellow-colored map indicating a large group
in this position is disadvantageous to the inhibitory activity. This
can be supported by the fact that compound 21 with an �iPr
substituent shows about 10-fold potency less than its counterpart
14 with a�Pr group. Another example is that compound 11 with
a larger substituent (m-tolyl) toward this spatial distribution is
less active than compound 3 with a relatively small substituent.
Thus, it can be concluded that in this position, an aliphatic
straight chain of four carbon length linked to the carbamate is
beneficial to the binding activity, while when a branching with the
bulk steric is introduced into the carbamate side chain, the
binding activity is disfavored. In addition, a green contour map
is also observed around the benzene ring linked to the pyrimi-
dine, indicating that its preference for a large substitute here. This
may explain the phenomenon why that almost all P2Y12 antago-
nists in the data set contain the large benzene ring in this position.
In fact, this conclusion is fully consistent with observations
obtained from ref 21, who systematically compared the effect
of changing the substitutes in this position by experiments and
found that if the�Ph was replaced with the H atom the binding
potency will be sharply reduced. It should be noted that, some
yellow contours are located at the distal part of amide group,
showing the substituent with the bulky steric is detrimental to the
binding potency. By comparing compounds 316 and 318 and
compounds 326 and 327 as well as compounds 328 and 329, it is
found that the presence of a larger group is harmful to the activity.
As shown in Figure 4B, the electrostatic contour map with the

combination of compound 316 from the CoMFA analysis is
depicted. The large red polyhedron surrounding the terminal
carboxylic acid of the glutamate depicts their favor for the
electronegative substituent. The fact that compounds 8 and 9
with the low binding potency contain no electro-riched sub-
stituent, such as �(CH2)2COOH, at this position proves this
finding. Moreover, at o-position of the pyrimidine, a small red
contour is located, indicating that the negatively charged groups
are favored at this position. Compound 1 having an N atom
instead of the C at this position exhibits higher activity than that
of its counterpart compound 3. Additionally, a large red contour
is found near the N atom at p-position on the pyrimidine ring
suggesting that electronegative substituents are favorable for the
binding activity. This is why compounds 264, 266, 268, 270, 272,
274, and 275 (with the electronegative N atom instead of the

Figure 4. CoMFA StDev*Coeff contour plots with the combination of compound 316. (A) Steric contour map. Green contours indicate regions where
bulky groups increase activity (favored level 80%), and yellow contours indicate regions where bulky groups decrease activity (disfavored level 20%). (B)
Electrostatic contour map. Red contours indicate regions where negative charges increase activity (disfavored level 20%), and blue contours indicate
regions where positive charges increase activity (favored level 80%).

Figure 5. CoMSIA StDev*Coeff contour plots with the combination of
compound 316. (A) Steric contour map. Green contours indicate
regions where bulky groups increase activity (favored level 0.02), and
yellow contours indicate regions where bulky groups decrease activity
(disfavored level�0.002). (B) Electrostatic contour map. Red contours
indicate regions where negative charges increase activity (disfavored
level 20%), and blue contours indicate regions where positive charges
increase activity (favored level 80%). (C) Hydrophobic contour map.
Purple contours indicate regions where hydrophobic substituents en-
hance activity (favored level 80%), and orange contours indicate regions
where hydrophobic substituents decrease activity (disfavored level
20%). (D) H-bond acceptor contour map. Magenta contours indicate
regions where H-bond acceptor substituents increase activity (favored
level 80%), and cyan contours indicate the disfavor regions for H-bond
acceptor groups (disfavored level 20%).
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corresponding C) present larger potency than their counterparts
355, 369, 372, 373, 366, 368, and 359, respectively. Since there
are several red-cord maps surrounding the piperidine ring, the
introduction of electron-rich groups in these positions is bene-
ficial to improve the inhibitory potency. A blue-colored map is
also noted near the carbonyl group on the piperazine ring, which
denotes that electropositive groups are desirable at this position
for the increase of P2Y12 antagonist inhibitory activity.
CoMSIA Contour Maps. Since similar results are obtained for

the steric and electrostatic contours of CoMSIA as those of the
CoMFA model, only the characteristics of the hydrophobic and
H-bonding interaction fields are described here.
For the CoMSIA hydrophobic field contour map as depicted

in Figure 5C, the purple contours are the regions where hydro-
phobic substituents are favorable for the P2Y12 inhibition,
whereas the orange contours are unfavorable. The appearance
of purple contours at the terminal butyl carbamate indicates that
substitution by hydrophobic groups at this location is extended
to result in a higher P2Y12 antagonist activity. Moreover, at the
back of the purple-colored contour, there is an orange map,
which indicates too long an alkyl chain entering this position
would be unfavorable for the activity. For example, most of highly
active compounds 314, 316, and 318 possess hydrophobic �Bu
groups which create a hydrophilic environment around this
contour, while their counterparts 315, 317, and 319 having larger
�Pent groups instead of �Bu exhibit relatively low potency.
Another large purple contour is located around the benzene ring,
suggesting the occupancy of this contour by hydrophobic group
would be favorable for the activity. The presence of a large orange
contour map around the carbonyl group linked to the piperazine
suggests that its occupancy by hydrophilic groups would favor
the inhibitory activity. Compounds 11 and 12 (having hydro-
phobic m-tolyl groups at the position) present low activities,
while other molecules with polar carbonyl group toward this
contour possess larger potency. As seen in Figure 5C, the orange
contour falls at the terminal amide group linked to the piperidine
ring, suggesting the occupancy of this contour by hydrophilic
group would be favorable for the activity as exemplified by the
most potent compound 316. On the contrary, several chemicals
such as 277, 298, 304, and 305 with nonpolar substitutes exhibit
decreased activity.
The H-bond acceptor contour map of the CoMSIA model in

the presence of the most potent compound 316 is depicted in
Figure 5D. A magenta contour around the carbonyl group of the
glutamate represents the increased activity of compounds if they
have a H-bond acceptor group at this position, which on one
hand is in accordance with the observations that most active
compounds in the data set contain a H-bond acceptor group,
such as �COOH, on the other hand indicates that a H-bond
acceptor group at this location may be a necessity for strong
binding activities. However, in the poorly active compounds 8
and 9, the substituent is a hydrogen atom which cannot form a
H-bond with the P2Y12 receptor close to the magenta contour.
As seen from Figure 5D, the large magenta contour extends from
the carbonyl group to the pyrimidine ring, indicating that
H-bond acceptor groups in these positions are favorable for
the P2Y12 inhibitory potency. For example, compounds 290, 295,
312, 314, 319, 321, and 323 with H-bond acceptor at the
p-position on the pyrimidine depict a larger potency than their
counterparts 333, 337, 340, 346, 350, 352, and 354 without such a
substituent in this position. Moreover, there is one large magen-
ta-colored contour overlapping the O atom of amide linked to

the pyrimidine of compound 316, which means that this group is
favored in this region and will lead to an increase of the inhibitory
potency. This may be the reason why most compounds in this
database possess this structure which seems to play a key role in
their predominantly positive effect on P2Y12 inhibitory activity.
In Figure 5D, the large cyan contour around �NH group of
amide linked to the piperidine indicates that presence of strong
H-bond donor is beneficial to the biological activity. This is in
agreement with the experimental results that compound 326
with a H-bond donor group of �NHEt gives a higher activity
than compound 327 without the H-bond donor substituent
(�NEt2). It is the same case for the compounds 317 and 319
as well as for compounds 316 and 318.
Molecular Docking. The docking results could illustrate us

the interaction modes between antagonists and the adenosine
diphosphate receptor (P2Y12). In the present work, the most
potent compound 316 is taken as the representative to elucidate
this point in detail. As illustrated in Figure 6, compound 316
locates at the active site of the receptor and binds primarily
through the hydrophobic and H-bond interactions. A narrow,
long hydrophobic cavity is formed among Val185, Leu178, and
Phe277 which accommodates a long chain hydrophobic sub-
stituent, and this conclusion is also inferred from both the steric
green and hydrophobic purple maps of the CoMSIA model. It
should also be noted that at the back of terminal butyl carbamate
on the piperazine nitrogen, there exists the side chain of Phe277.

Figure 6. Molecular docking model of compound 316 in the binding
site of P2Y12. (A) A surface rendering to illustrate the interactions
between compound 316 with the representative amino acids. The
dashed lines show the formation and distance of the H-bonds. Com-
pound 316 is depicted as carbon chain in bright-green. (B) The active
site residues are represented as follows: polar residues in blue and
hydrophobic residues in purple, respectively.
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Therefore, substituents with too long straight chain at this
position are unfavorable to the activity probably due to the
crashing with this residue. Thus, it can be concluded that those
substituents containing a linear alkyl chain (with a four to five
carbon length) can result in an increase of the activity. This is in
agreement with our CoMFA and CoMSIA steric maps. Another
hydrophobic center is formed between Leu178, Phe177, and
Lys174, thus a large substituent, such as the benzene ring, in this
position will increase the activity. This observation is fully
supported by our CoMFA and CoMSIA steric maps results.
Additionally, the aromatic ring of Phe177 anchors the aromatic
moieties of the pyridine and phenyl rings of the ligand through
π�π stacking. The third hydrophobic interaction is observed at
the distal of the piperidine ring of compound 316 including
Glu281, Phe104, Trp285, Tyr32, Phe28, Lys80, and Asp84. In
this hydrophobic pocket, one can notice that most of residues
include aromatic rings indicating a hydrophobic substituent
linked to the tail of piperidine could increase the inhibition
potency. In addition, at the terminal ethyl amide, there are three
residues of Phe28 and Leu284 blocking the bulky substituents in
this position, which is consistent with our 3D-QSAR results also.
Compounds 321, 322, and 315 with ring and branching struc-
tures show less activity than that of 316 with a relatively small�Et
group, which is just a good illustration.
Besides the important role of hydrophobic interactions, sev-

eral H-bond interactions formed between the ligand and P2Y12
also attract our attention. For example, the carbonyl O atom as a
H-bond acceptor forms two H-bonds with two N atoms of
Arg256 with the bond lengths of 1.9 and 2.1 Å, respectively.
Another H-bond interaction can also be formed between the
residue Lys280 and �OH of the ligand with the bond length of
3.3 Å. Thus, the antagonist is stabilized in the binding pocket by
H-bond interactions between the carboxyl group of the com-
pound and the residues Arg256 and Lys280. It can also be noted

that Tyr259 is in close proximity of the esther group attached to
the piperazine ring. All these findings can be supported by the
previous report.14 In this docking simulation, two amino acid
residues (Arg256 and Lys280) have been identified to play an
important role in the binding interactions with the ligands,
which can also be supported by previous published site-directed
mutagenesis study.77

Molecular Dynamic Simulation. Presently, a 5 ns simulation
of the docked complex structure of P2Y12 with antagonist 316
was performed to obtain a dynamic picture of the conformational
changes that occur in an aqueous solution, with main emphasis to
explore the conformational change that takes place in the antagonist
316 and P2Y12 receptor.
Figure 7A shows the root-mean-square deviation (rmsd) of

the trajectory for the complex with respect to the initial structure
(in blue line), and the graph presents that the rmsd reaches about
0.6 Å, which suggests that a relatively stable conformation of the
protein is achieved through the MD simulation. Figure 7A also
gives the rmsd of the ligand 316 (in red line) in the binding site of
P2Y12. It can be clearly noted that the rmsd for the ligand reaches
about 0.1 Å from the beginning ofMD simulation and retains this
value throughout the simulation, suggesting that the changes of
complex are mainly caused by the protein. In fact, it can be
noticed that the P2Y12 used in the present work has a long tail,

14

which may be one probable reason why the rmsd values present a
little change at the end the MD simulation. In order to compare
the structures fromMD simulations and docking, a superimposi-
tion of both the structures in the last 2 ns is shown in Figure 7B,
where the bright-green ribbon represents the initial structure for
the docked complex, the light-blue ribbon represents the average
structure, with compound 316 represented as carbon chain in

Figure 7. MD simulation results. (A) Plot of the rmsd of the docked
complex versus the MD simulation time in the MD-simulated structure.
(B) View of the superimposed backbone atoms of the average structure
of the MD simulation (light-blue) and the initial structure (bright-
green) for compound 316-P2Y12 complex. Compound 316 is repre-
sented as carbon chain in bright-green and light-blue for the initial and
average complexes, respectively.

Table 3. Structures and CoMFA and CoMSIA Predicted
Activity of New Designed P2Y12 Antagonists

predicted pKi

no. CoMFA CoMSIA

compd. 316 8.967 8.934

ND 1 9.865 9.123

ND 2 10.058 9.484

ND 3 10.117 9.800

ND 4 10.422 10.265

ND 5 9.556 10.185
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bright-green for the initial complex and carbon chain in light-blue
for the average complex, respectively. It can be noticed that from
this figure, basically, there is no significant difference between the
average structure extracted fromMD simulations and the docked
model of the complex, especially at the right part of the pyrimidine
ring. One can also notice that the butyl carbamate part (light-blue)
presents a slight movement out of the docking one (bright-green).
Although the complex has undergone several movements during
MD simulation, both the binding pocket and the conformation of
the ligand are still stable, suggesting rationality and validity of the
docking model.
Design of NewP2Y12 Antagonists.According to the detailed

contour analyses of CoMFA and CoMSIA models, some useful
information on the structural requirements for the observed
inhibitory activity is obtained. Based on this information, five
new pyrimidines analogues showing enhanced predicted in-
hibitory activity compared with the most potent compound
316, which is used as a reference molecule, were designed by
us. At present, the modified parts are focused on three regions
(i.e., region 1, region 2, and region 3) in the reference
molecule. As shown in Table 3, all the designed molecules
show better pKi than the reference molecule 316. Since the
present work focuses on the computational investigation of
the SAR of piperazinyl-glutamate-pyridines/pyrimidines de-
rivatives as P2Y12 antagonists and the exploration of the
interaction mechanism between P2Y12 and its antagonists by
modeling results, the validation of the inhibitory activity of the
novel-designed five compounds needs further experimental
evaluations.

4. CONCLUSIONS

Presently, for the first time a large data set of 397 piperazinyl
glutamate pyridines/pyrimidines as potent orally bioavailable
P2Y12 antagonists for the inhibition of platelet aggregation has
been estimated for the purpose of developing 3D-QSAR models
based on both the ligand- and receptor-based superimpositions.
Statistically significant models have been derived with two 3D-
QSAR methods of CoMFA and CoMSIA on the basis of the
database alignment method. These two approaches produce
equally good models expressed in terms of several rigorous
evaluation criteria, such as Q2 and R2pred, for both the internal
and external data sets. Graphical interpretation of the optimal
results, provided by the CoMFA and CoMSIA analyses, brings to
light important structural features that could be responsible for
the low- or high-bonding activity P2Y12 antagonism: (i) Substit-
uents with a proper length and size of carbamate (straight chain
alkyl group with four-carbon) on the piperazine nitrogen are
beneficial for the increase of potency; (ii) a bulky group at the
distal of the amide linked to the piperidine ring is likely to
decrease the P2Y12 bonding; (iii) substituents with electro-
riched groups at the o- and p-position on the pyrimidine are
favored, and the carbonyl group of glutamate should be required
for the ligand binding; (iv) the introduction of hydrophobic
substituents at the terminal of the butyl carbamate on the
piperazine nitrogen would enhance the binding; (v) H-bond
acceptor groups near the carbonyl oxygen atom of glutamate and
nitrogen atoms at p-position on the pyrimidine could result in
larger binding affinity; (vi) furthermore, the key amino residues
to the ligand�P2Y12 interaction have been found, i.e., Arg256
and Lys280, which form three important H-bonding interactions
between the ligand and the target.

In addition, a good consistency between the CoMFA and
CoMSIA contour maps, molecular docking, and molecular
dynamics simulations proves the reliability and the robustness
of the developed models.

Overall, in this report, several reliable computation models
between piperazinyl glutamate pyridines/pyrimidines and P2Y12
have been built, which not only exhibit satisfied statistics but also
provide several possible mechanism interpretations from a
molecular level. We hope the models may provide an insight
into some instructions for further synthesis of highly potent
P2Y12 antagonists.
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