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Abstract: Orally administered drugs must overcome several barriers before reaching their 

target site. Such barriers depend largely upon specific membrane transport systems and 

intracellular drug-metabolizing enzymes. For the first time, the P-glycoprotein (P-gp) and 

cytochrome P450s, the main line of defense by limiting the oral bioavailability (OB) of 

drugs, were brought into construction of QSAR modeling for human OB based on 805 

structurally diverse drug and drug-like molecules. The linear (multiple linear regression: 

MLR, and partial least squares regression: PLS) and nonlinear (support-vector machine 

regression: SVR) methods are used to construct the models with their predictivity verified 

with five-fold cross-validation and independent external tests. The performance of SVR is 

slightly better than that of MLR and PLS, as indicated by its determination coefficient (R2) 

of 0.80 and standard error of estimate (SEE) of 0.31 for test sets. For the MLR and PLS, 

they are relatively weak, showing prediction abilities of 0.60 and 0.64 for the training set 

with SEE of 0.40 and 0.31, respectively. Our study indicates that the MLR, PLS and  
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SVR-based in silico models have good potential in facilitating the prediction of oral 

bioavailability and can be applied in future drug design. 

Keywords: oral bioavailability; quantitative structure activity relationship; cytochrome 

P4503A4 and P4502D6; P-glycoprotein 

 

1. Introduction 

A large number of compounds emerging from combinatorial chemistry and high throughput 

medicinal chemistry programs have increased the demand for new compounds that need to be screened 

in a wide range of biological assays [1]. It has been reported that 95% of lead compounds fail in the 

developmental stages, and 50% of these failures are induced by unfavorable absorption, distribution, 

metabolism, and excretion (ADME) properties [2,3]. Since the predominant and most convenient way 

to deliver drugs to the systemic circulation for patients is the oral route, the good oral bioavailability (OB) 

of a new drug candidate is undoubtedly one of the most important pharmacokinetic parameters along 

with ADME properties. 

The OB is defined as “the rate and extent to which the active ingredient or active moiety is absorbed 

from a drug product and becomes available at the site of action” by FDA [4]. A low and highly 

variable bioavailability is the main reason for stopping further development of the drug candidates.  

In fact, in recent years, multiple large-scale experiments drugs candidates have been conducted to 

assess the OB values of molecules, but they are labor-intensive and time-consuming. Therefore, 

developing a reliable and efficient in silico method that can predict human OB is compelling [5,6], 

both in the early stage of drug discovery to select the most promising compounds for further 

optimization and in the later stage to identify final candidates for further clinical development. 

Lipinski’s “Rule of Five”, which could be qualitatively used to predict the absorption and 

permeability of drug molecules, has so far been the primary guide to predicting OB [7]. Since then, 

numerous classification and regression models for the predictions of OB were proposed by applying 

various statistical and machine-leaning computational approaches [8,9]. However, most of these 

models cannot demonstrate satisfactory predictions for the bioavailability. In 2000, Andrews and  

co-workers constructed a regression model to predict OB based on a dataset of 591 molecules by 

employing 85 structural descriptors [8]. Compared to Lipinski’s “Rule of Five”, the false negative rate 

was reduced from 5% to 3%, and the false positive rate decreased from 78% to 53%. But it should be 

noted that this model is not very good considering the high rate of false positives and the 85 

descriptors used, which would cause an overfitting problem. In the same year, Yoshida et al. 

established a classification model for predicting OB with 15 structural descriptors, in which three 

descriptors were closely related to distribution coefficients [9]. However, this model can only perform 

a correct accuracy of 60% for the test compounds, leading to the difficulty to construct highly  

reliable models. 

It is a significant milestone that Hou and his coworkers have built a publicly available and reliable 

source for OB in 2007 [10]. Then, many new models based on the large and reliable database were 

proposed [11,12]. In 2008, Wang et al. showed that no good prediction model of general validity could 
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be obtained with the full dataset of 772 compounds, and instead, have built four better models by 

manually selecting the compounds characteristic with similar structures or pharmacological activities [11]. 

However, the number of each subset is too small to cover all the 772 compounds. Subsequently, Ma 

and co-workers proposed a prediction model of OB using GA-CG-SVM, which gained receivable 

overall classification accuracy (~80%), but unreasonable prediction accuracy for the low-bioavailability 

class (~25%) [12]. In 2011, Tian et al. constructed multiple linear regression (MLR) models for OB 

based on molecular properties and structural fingerprints by employing the genetic function 

approximation (GFA) technique, but their prediction abilities were relatively low [13]. In short, no 

reliable prediction model for OB has been developed based on the simple descriptors so far.  

Indeed, the human bioavailability involves a complex biological and physiological process that is 

influenced by various factors, including gastrointestinal transition and absorption, intestinal membrane 

permeation, and intestinal/hepatic first-pass metabolism [14]. P-glycoprotein (P-gp), as the most 

studied ATP-dependent efflux protein, enables to drive compounds from inside the cell back into the 

intestinal lumen, and thereby prevents their absorption into blood [15]. Such protein is present on the 

intestinal brush border, in close proximity to the main cytochrome P450 (CYP) isoenzymes 

responsible for the majority of intestinal drug metabolism, CYP3A4 and CYP2D6 [16]. The CYP 

system is the most important family of enzymes that carry out oxidation of drugs and xenobiotics, 

which contributes significantly to the first-pass metabolism of many drugs such as cyclosporine, 

midazolam, and verapami. Indeed, substrates for P-gp and CYP3A have great overlap covering diverse 

therapeutic indications and a broad range of molecular structures, which indicates that the two proteins 

act synergistically in preventing drugs from crossing the intestinal barrier [17]. Therefore, it is 

reasonable to believe that in combination with P-gp, the CYP enzymes are critical factors in 

determining the bioavailability of drugs. 

It is frequently stated that the ideal model system for OB of drugs should be physiologically and 

sufficiently reflective of the specific biological barrier of interest in humans [18]. This emphasizes that 

the knowledge of the metabolism and efflux at the intestinal mucosal level is of particular importance. 

Thus in this work, to compensate for the lack of key information on the physiological and biochemical 

processes for the prediction of oral drug bioavailability, and to improve the reliability and efficiency of 

OB models, we have developed a novel chemometric method by integrating the properties of  

P-gp-mediated efflux and metabolism by P450. On the basis of a large-scale OB (%F, the amount of 

drug that reaches the systemic circulation after absorption and first pass clearance) database, the 

relationships between %F with the well-used molecular properties have been elucidated and the 

reliable prediction models for OB were constructed, which can be used as rapid screening filters for 

candidate drugs. 

2. Materials and Methods 

2.1. Dataset Construction 

805 structurally diverse drug and drug-like molecules and their OB values (%F) in human were 

obtained from the bioavailability database [19]. The dataset encompassed a broad range of chemical 

substances. For the compounds with different bioavailability values, their average values were 
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employed to reduce bias in the experiments. In this work, to guarantee the linear distribution of the 

biological data, all the OB values were transformed into the common logarithm of log (oral 

bioavailability) (logB). The structures of the components were downloaded from Chemical Book 

Database [20], or generated by ISIS Draw 2.5 (MDL Information Systems, Inc.), and then were 

optimized by Sybyl 6.9. The Sybyl parameters were set similarly to those in our previous work [21]. 

All the chemicals were saved as mol2 format for further analysis. 

2.2. Molecular Descriptors 

Construction of the models for OB firstly depends on the generation of molecular descriptors, 

which can be calculated directly from the structure of any particular molecule by simply using various 

molecular modeling tools. Dragon descriptors have been successfully used for quantitatively 

representing the structural and physicochemical features of a molecule [22–24]. In the present work, a 

total of 1536 molecular descriptors were calculated using dragon professional 5.4-2006 [25], including 

constitutional descriptors, topological descriptors, walk and path counts, connectivity indices, 

information indices, 2D autocorrelations, edge adjacency indices, Burden eigenvalues, topological 

charge indices, eigenvalue-based indices, Randic molecular profiles, geometrical descriptors, RDF 

descriptors, 3D-MoRSE descriptors, WHIM descriptors, GETAWAY descriptors, functional group 

counts, atom-centered fragments, charge descriptors and molecular properties. Constitutional 

descriptors are related to the number of atoms and bonds in the molecule. Topological descriptors are a 

special class of descriptors that do not rely on a three-dimensional model, including valence and no 

valence molecular connectivity indices calculated from the hydrogen suppressed formula of the 

molecule, encoding information about the size, composition, and the degree of branching of a 

molecule. Autocorrelation descriptors constitute a set of molecular descriptors derived from a 

conceptual dissection of the molecular topology and taking into account chemical information 

contained in the atomic weightings and structural information by specified weights of the molecule 

atoms. Radial Distribution Function (RDF) descriptors do not depend on the molecular size and take 

into account the 3D arrangement of the atoms without ambiguities, thus being applicable to a large 

number of molecules with great structural variance and being a characteristic common to all of them. 

Formally, the RDF of an ensemble of atoms can be interpreted as the probability distribution of finding 

an atom in spherical volume of radius R. The geometrical descriptors describe the size of the molecule 

and require 3D-coordinates of the atoms in the given molecule. 

2.3. Database Division  

All the 805 compounds were divided into several statistical subsets by using the Self-consistent 

method. First, the geometry-based algorithm [26] was applied to identify the binding modes of 

molecules with the metabolizing enzymes CYP3A4 and CYP2D6 and the efflux protein P-gp. The 

crystal structures of human CYP3A4 (PDB code: 3NXU) and CYP2D6 (PDB code: 2F9Q) were 

retrieved from RCSB Protein Data Bank [27]. Due to unavailability of the X-ray structure of human P-

gp, a homology modeling for the protein was performed [28]. The template protein employed here was 

mouse P-gp (PDB code: 3G60 chain A [9]) which exhibited a high resolution (4.40 Å). This method 

employed three-dimensional transformations driven by local feature matching, and spatial pattern 
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detection techniques such as the geometric hashing and pose clustering, to yield good molecular shape 

complementarity with high efficiency. After the fast transformational search, the best geometric fit 

obtained the highest scores (~5000), while the low scores (~500) exhibited poor matches. For the 

complexes in our work, the Clustering RMSD was 2.5 Å. The five lowest-binding energy matches for 

each complex were selected and analyzed visually.  

Secondly, the iterative self-consistent approach was used for setting boundary for the subsets [29]. 

This method applied iterative steps to identify the maximum spatial distribution of molecules on the 

basis of their features, and estimate the statistical parameters of the spatial processes. In other words, 

the subsets are divided based on the correlation between the values of neighboring molecules. In the 

present work, the 805 molecules were first ranked by their binding affinities in descending order. 

Based on the ranking of binding affinities, one subset of the compounds with random number was 

selected at each of the end position, and then the correlations between the bioavailability of the 

molecules and their corresponding binding affinities were evaluated, respectively (step 1). The 

obtained determination coefficients (R2) were employed as a judgment for the boundary setting of 

molecules. The feature similarity of neighboring molecules was estimated to probe the maximum 

spatial gap: 
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where n is the number of subset, ri is sample number of subset i, and xj, xk are feature descriptor 

vectors for compound j, k of subset i. 

Finally, steps 1 and 2 were repeated until the reliable R2 values were obtained for each subset.  

2.4. Design of Training and Test Sets 

The compounds in each subset were split into training and independent validation sets based on 

their distribution in the chemical space as defined by Self-organizing map (SOM). SOM is a type of 

artificial neural network that is trained using unsupervised learning to produce a low-dimensional 

representation of the input space of the training samples [30]. In the SOM, the procedure for placing 

the vector from data space onto the map is to find the neuron with the closest weight vector to the 

vector taken from data space and to assign the map coordinates of this neuron to the vector. A formal 

rule for the selection of the winner (out) is based on the Euclidean distance between a vector (x) and a 

weight (w).  
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Then the weight of the winner is corrected to decrease this distance. In such a process, the SOM 

works as a clustering diagram grouping similar inputs from the input space into similar neurons of the 

output space.  

The optimal 10 × 10, 7 × 6, 8 × 8, 8 × 8 node architectures were chosen to map objects into 100, 42, 

64, 64 positions for Set 1, Set 2, Set 3 and Set 4, respectively. Similar compounds were clustered into 

the same position (x, y coordinate in a SOM). Only one part of a representative object from each 

position in the SOM map was chosen for the training set, respecting the original proportion and the 
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predefined 4:1 ratio between the training and test objects. For each subset, the obtained training sets 

including 156, 122, 180 and 197 compounds were applied for the development of the modeling 

system, and the rest groups of 36, 27, 44 and 43 compounds as the independent evaluation set were 

used for the assessment of the system, respectively. The simulations were carried out using an 

internally developed C-language program. 

2.5. MLR 

As one of the most widely used methods for forecasting, MLR attempts to model the relationship 

between two or more explanatory variables and a response variable by fitting a linear equation to the 

observed data [31]. By interpreting the descriptors in the regression models it is possible to gain some 

insight into those factors that are likely to govern the OB of the compounds, which is very useful in the 

design of new drugs or to screen drug-like compounds starting only from the molecular graph. 

Generally, the more the parameters are used in regression equation the lower the value of residual sum 

of squares and the higher the value of explained sum of squares will be. However, models containing 

more correlating parameters may suffer from the defect of collinearity and containing inferior variables 

and omitting important ones, which will make the parameters’ estimation based on traditional methods 

not satisfactory. Therefore, considering the large number of molecular descriptors we used, the 

stepwise process is applied to choose the best combination of descriptors automatically and construct 

the multiple regression models with the highest statistical significance. 

In this work, those variables with zero values (> 80%) were eliminated, with remaining molecular 

descriptors further selected by the stepwise method in MLR process. The Stepwise variable entry and 

removal examines the variables in the block at each step (criteria: probability of F to enter ≤ 0.05, 

probability of F to remove ≥ 0.10).  

2.6. Partial Least Squares Analysis (PLS) 

PLS, known as Projection to Latent Structures, is a powerful statistical method that can easily cope 

with a large number of correlated descriptors by projecting them into several orthogonal latent 

variables [32]. Being a component-based structural equation modeling technique, PLS simultaneously 

models the structural paths (i.e., theoretical relationships among latent variables) and measurement 

paths (i.e., relationships between a latent variable and its indicators). Rather than suppose equal 

weights for all indicators of a scale, the PLS algorithm allows each indicator to vary in how much it 

contributes to the composite score of the latent variable. Therefore, indicators with weaker 

relationships to related indicators and the latent construct are given lower weightings [33]. Each 

iteration of the algorithm introduces another latent variable. The number of latent variables was chosen 

to maximize cross-validated R2 (called Q2) of the training set. The model is generally considered 

internally predictive if Q2 > 0.5 [34], as generally the Q2 are much better indicators than standard error 

and conventional R2 of how reliable predictions actually are.  
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2.7. Support Vector Regression (SVR) 

Recently, SVR has emerged as an alternative and powerful technique to solve regression problems 

by introducing an alternative loss function [35]. Such method attempts to minimize the generalization 

error bound by structural risk minimization (SRM) principle so as to achieve generalized performance 

instead of minimizing the observed training error. In this work, this method has been applied to estimate 

the nonlinear relationships between the OB values of molecules and their relative molecular features. 
Hence, only a brief description of the method is given here. Suppose we are given training data 

{( , )}n
i i ix y  where xi denotes the input vector; yi denotes the output (target) value and n denotes the total 

number of data patterns. The modeling aim is to identify a regression function ( )y f x=  that 

accurately predicts the outputs yi corresponding to a new set of input-output examples{( , )}i ix y . Using 

mathematical notation, the nonlinear regression function in the original feature space is approximated 

using the following function: 

( ) ( ) , : ,nf x w x b R F w Fϕ ϕ= ⋅ + → ∈  (3)

where w and b are regression parameters. And ( )xϕ  denotes the high-dimensional feature space, which 

is nonlinearly mapped from the input space. Additionally, by introducing Lagrange multipliers and 

exploiting the optimality constraints, the SVR function is finally formulated as following: 

*

1

( ) ( ) ( , )
n

i i i
i

f x K x x bα α
=

= − +  (4)

where iα  and *
iα  are Lagrange multipliers, have been obtained by minimizing the regularized risk 

function. The kernel function ( , )iK x x  has been defined as a linear dot product of the nonlinear 

mapping, i.e.,  

( , ) ( ) ( )i iK x x x xϕ ϕ= ⋅  (5)

Generally, four kinds of kernel functions, i.e. linear function, polynomial function, sigmoid function 

and radial basis function 

2

22( , )
i jx x

i jK x x e σ
−

−
= (RBF), are available to perform prediction. Empirical 

studies have demonstrated that the RBF outperforms the other three kinds of kernel functions. Hence, 

this work adopted the RBF to perform inference process. The regularization parameter C and the 

kernel parameter γ were selected based on the overall accuracy of the internal five-fold  

cross-validation using the grid search method.  

3. Results and Discussion 

3.1. Dataset Division 

At first, three methods including MLR, PLS and SVM were tried in order to build reasonable 
predictive models for OB of 805 molecules as a whole dataset. For the MLR model, its coefficients R2 

for training set and testing set are 0.39 and 0.47, respectively. The PLS model with best performance 

has 8 latent variable, presenting R2 = 0.58 for the training set, and Qex
2 = 0.37 for the test set. As for the 

SVM model, the regression results in the poor R2 and Qex
2 of 0.39 and 0.35, respectively. From these 

results, it can be concluded that the present models generated relatively poor models for the prediction 
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of OB values, in agreement with these reported models [8,9,11,12]. Accordingly, novel chemometric 

methods are needed to be introduced to improve the prediction ability for the OB of drugs.  

The multidrug resistance (MDR) ATP binding cassette (ABC) proteins, especially the P-gp, are 

large, membrane-bound proteins, which form a functional network, capable to extrude a very wide 

range of foreign (xenobiotic) substrates [16]. As well as the efflux pump, the cellular route of 

absorption exposes drugs to intracellular metabolic systems; small intestinal enterocytes provide the 

first site for CYPP450-mediated metabolism of orally ingested drugs and xenobiotics [15]. For 

CYP3A4 and CYP2D6, the major Phase I drug-metabolizing enzymes, they are found to play 

complementary roles with P-gp in intestinal drug metabolism, where, through repeated extrusion and 

re-absorption, P-gp ensures elongated exposure of the drugs to the metabolizing enzyme [36]. 

Therefore, for crossing tissue barriers, in addition to some basic physical characteristics, including 

molecular size, charge distribution, and hydrophobicity, drug interactions with the membrane 

transporter P-gp and the metabolizing enzymes CYP3A4 and CYP2D6 are also key determinants [37]. 

Due to the critical roles of the specific membrane transport system and the intracellular metabolizing 

enzymes in oral drug bioavailability, it is thus reasonable to bring the information on P-gp, CYP3A4 

and CYP2D6 into the creation of a new chemometric method for OB prediction.  

In this work, we have divided the 805 structurally diverse drug and drug-like molecules into subsets 

based on the binding affinity features of the molecules with the three proteins, which significantly 

strengths the performance of OB models as mentioned in the following section 3.2. Here, the  

self-consistent method was applied to define the ranking boundary of the subsets. According to the 

binding features of the molecules, all compounds are iteratively used for classification analysis to 

ensure the optimal performance for the whole datasets. Finally, four subsets with best performance 

were generated: Set 1 (binding score < 5, 192 compounds), Set 2 (5 < binding score < 6, 149 compounds), 

Set 3 (6 < binding score < 7.5, 224 compounds) and Set 4 (binding score > 7.5, 240 compounds)  

(Table S1).  

3.2. Design of Training and Test Sets 

The Kohonen’s self-organizing Neural Network has the special property of effectively creating a 

spatially organized internal representation of various features of input signals and their abstractions [31]. 

Therefore, the SOM method that enables to split a dataset into training and test sets assures that both 

sets cover the information space as good as possible. Figure 1 shows the distribution of the compounds 

within the best mapping in Set 3. The two-dimensional square grid presents clear division of the input 

pattern into 64 neurons. Our selective premise for the test set was that the test molecules distributed in 

the overall data set should be more representative of the overall data set and thus should lead to good 

predictive models [38]. Projections of the test and training set in the map indicate that these molecules 

are evenly distributed over the map: 54 of 64 for Set 3. For the SOM of Set 3, a relatively concentrated 

area appears in the middle side for the test set (numbers with frame), and several small test clusters 

reside in the ambient side of the map. Finally, the SOM models for Set 1, Set 2, Set 3, Set 4 were built 

with different data divisions of 156/36, 122/27 and 180/44 and 197/43, respectively. 
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Figure 1. Clustering of 8 × 8 Self-organizing map (SOM) of 224 compounds in Set 3. The 

numbers correspond to the series numbers of the compounds. Those numbers with frames 

are compounds of the test set, and the others are the compounds of the training set.  

 

3.3. Model Building 

3.3.1. The Results of MLR 

The MLR analysis with stepwise selection was employed to extract the molecular descriptors for 

creation of structure-OB relationships. The appropriate model should have reasonable R2, F-test, and 

SEE (standard error of estimation) values, but also have ability to predict the property of the test 

compounds (Qex
2, SEP, standard error of prediction) not included in the training set. The resulted 

correlation between experimental and predicted logB for all the compounds was shown in Figure 2.  

For example, the optimal linear model was built with eleven descriptors in Set 1: 

LogB = −16.8 (R3v+) + 8.5 (R2p+) − 2.7 (nC=O(O)2)−1.5 (nNq) −1.1 (nROCON) − 

0.7 (nSH) − 0.2 (MATS7p) − 0.1 (T (O.P)) − 0.1 (O-056) − 0.04 (G (N.Br)) − 

0.02 (RDF130m) + 1.9 

(6)

Ntr = 156; Nte = 36; R2 = 0.621; Qex
2 = 0.612; F = 21.374; SEE = 0.411; SEP = 0.311. 

where Ntr and Nte are the number of compounds included in the training and test set, respectively. 

Predicted values from Equation (6) fell close to the experimental logB with reasonable R2 (0.6), which 

indicates good statistical characteristics of the model. The model’s prediction capability is further 

validated by the external test with rational correlation coefficients (0.612).  
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Figure 2. Experimental and predicted LogB values for Set 1, Set 2, Set 3 and Set 4 using 

the multiple linear regression (MLR), partial least squares (PLS) and support-vector 

machine regression (SVR) models, respectively. For MLR, the training and test sets are 

represented by the black empty squares and black solid squares, respectively. For PLS, 

they are represented by the red empty circles and red solid circles, respectively, while for 

SVR, they are shown by the blue empty triangles and blue solid triangles, respectively. 

 

For the MLR equation, it is worthwhile to note that the sequential order in which these variables 

appeared in the OB model agreed with the order of relative contribution importance (in modulus), as 

derived from a subsequent standardization of the orthogonalized regression coefficients. The equation 

of Set 1 shows that the most important two descriptors are the GETAWAY descriptors R3v+ and 

R2p+. R3v+ is defined as R maximal autocorrelation of lag 3 / weighted by atomic van der Waals 

volumes, while R2p+ is R maximal autocorrelation of lag 2 / weighted by atomic polarizabilities. 

Since such descriptors derived from the Molecular Influence Matrix (MIM) contain local or distributed 

information on molecular structure, in most cases more than one GETAWAY descriptor is needed to 

reach an acceptable modeling power. The negative coefficient of R3v+ implies that low value of 

atomic van der Waals volumes can lead to increased bioavailability for a compound. While the 

positive coefficient of R2p+ may be interpreted as that low value of the atomic polarizabilities can lead 

to decreased OB of a molecule.  

Hydrogen bonding interaction often plays an important role in determining the binding of  

a ligand-receptor. This implies that the binding of candidate drugs with proteins and metabolizing 
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enzymes in the cellular membranes have great effects on the human bioavailability, i.e., the stronger 

binding of agents with the proteins, the more difficult the molecules overcome the cellular barriers. In 

fact, for the functional group counts descriptors in Equation 1, nC=O(O)2, nNq and nROCON present 

the E-state of hydrogen bond acceptors, while nSH is the E-state of hydrogen bond donor. Since the 

negative coefficients of the descriptors suggest that higher values of the factors induce lower OB value 

of a molecule, it is reasonable to believe that the existence of hydrogen bond acceptors and donors is 

actually unfavorable for the bioavailability of candidate drugs. 

As for the Set 2 model, Equation 7 presents the optimal MLR model based on the eleven descriptors 

for the OB direction: 

LogB = −2.3 (G2e) − 1.4 (R1e) + 0.8 (Mor27v) − 0.8 (nCONN) + 0.5 (Mor25e) − 

0.3 (nRCOOR) − 0.4 (Mor30u) + 0.3 (C-039) + 0.2 (MAXDN) + 0.1 (Mor06e) − 

0.1 (Mor04e) + 4.6 

(7)

Ntr = 122; Nte = 27; R2 = 0.521; Qex
2 = 0.542; F = 10.871; SEE = 0.400; SEP = 0.480. 

The plot of experimental versus predicted logB shows that the predicted values enable to capture 

the experimental values with reasonable R2 value (0.521). The model’s prediction ability is also 

validated by the external test with correlation coefficients Qex
2 = 0.542 and SEP = 0.480. As the most 

important descriptor for the OB value in Set 2, G2e is a second component symmetry directional 

WHIM descriptor that involves the atomic Sanderson electronegativities as a weighting scheme [39].  

It is based on the statistical indices calculated as the information content index on the symmetry along 

each component. The negative coefficient of the descriptor indicates that bioavailability of a candidate 

drug increase with decreasing molecular symmetry. For another descriptor R1e, it belongs to the same 

class of GETAWAY descriptors as the R3v+ and R2p+ in Set 1, which emphasizes the important roles 

of the GETAWAY descriptor in determining the OB values of molecules. In addition, several  

3D-MoRSE descriptors are also selected to build the model, including Mor25e, Mor04e, Mor27v, 

Mor30u and Mor06e. They are molecule atom projections along different angles, which represent 

different views of the whole molecule structure. As for the functional group counts’ descriptors 

nCONN, nRCOOR, they represent the E-state of hydrogen bond acceptors, which are closely 

associated with the human bioavailability as mentioned in Equation 6. 

For the MLR models of Set 3 and Set 4, their statistical characteristics are slightly worse, with 

lower R2 and higher residues (Table 1), and therefore detailed analysis for the results of Set 3 and Set 4 

are not presented here.  
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Table 1. Statistical results of MLR, PLS and SVR for oral bioavailability (OB) prediction of compounds.  

 Set 1 Set 2 Set 3 Set 4 
Training size Test size Training size Test size Training size Test size Training size Test size 

156 36 122 27 180 44 197 43 
R2 SEE Qex

2 SEP R2 SEE Qex
2 SEP R2 SEE Qex

2 SEP R2 SEE Qex
2 SEP 

MLR 0.621 0.411 0.612 0.311 0.521 0.400 0.541 0.482 0.610 0.492 0.612 0.48 0.61 0.482 0.622 0.480 

PLS 0.631 0.390 0.651 0.311 0.643 0.331 0.511 0.470 0.561 0.500 0.561 0.521 0.831 0.312 0.600 0.490 

SVM 0.800 0.311 0.720 0.220 0.750 0.280 0.630 0.772 0.780 0.361 0.800 0.361 0.690 0.421 0.682 0.461 

SVMT 0.840 - 0.731 - 0.731 - 0.310 - 0.970 - 0.590 - 0.990 - 0.561 - 

R2, the regression coefficient of the training set; Qex
2, the regression coefficient of the test set; SEE, standard error of estimate; SEP, standard error of 

prediction; SVMT represents the models using the total 1536 molecular descriptors as the input variables of SVR; -, not available.  
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3.3.2. The Results of PLS 

PLS is a wide class of methods for modeling relations between sets of observed variables (Y) by 

means of latent variables (orthogonal linear combinations of X). As a standard regression technique, 

PLS can handle highly correlated, noisy, and numerous X-variables and simultaneously predict several 

response variables. In this section, PLS was carried out to construct the relationships between the 

bioavailability of the compounds and their molecular structures, which is based on linear 

transformation from a large number of original descriptors to a new variable space. The numbers of the 

latent variables were chosen to maximize the prediction accuracy of the cross-validated dataset. As 

shown in Figure 3, the PLS models were built with different latent variables varying from 3 to 20 for 

Set 1, Set 2, Set 3 and Set 4, and finally 5, 5, 4 and 7 were selected as the optimal number of the PLS 

factors for each subset, respectively. Under such condition, the average error rate (cross-validation) for 

the 805 molecules is the smallest (~0.581) among all the cases of different number of factors. As 

shown in Figure 2, the obtained models are satisfactory for both the training and test sets, with no 

evident overfitting or over-training phenomenon. The PLS models exhibit the reasonable correlation 
coefficients R2 of ~0.691 with SEE of ~0.411 for the training data. All the data show that the models 

are externally good predictive, which indicates that PLS enables to generate relatively good models for 

the bioavailability of the compounds. However, compared with the MLR models, the PLS models do 

not display absolute advantages for the SEE, SEP, and Oex
2 for the training and test sets. 

Figure 3. The prediction accuracies of 5-fold cross-validation for the 805 compounds 

derived from partial least squares analysis with latent variables varying from 3 to 20 in  

Set 1, Set 2, Set 3 and Set 4, respectively.  
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3.3.3. The Results of SVR 

As a new and powerful modeling tool, SVR has recently gained much interest in pattern recognition 

and function approximation applications. Compared with traditional regression and neural networks 

methods, SVRs have some advantages, including global optimum, good generalization ability, simple 

implementation, few free parameters, and dimensional independence [40,41]. In this study, SVR takes 

the most commonly used Gaussian radial basis function as the kernel function, which involves two 

parameters to be optimized, i.e., the penalty parameter C and the Gaussian function parameter γ. To 

determine the optimal parameters, a grid search was performed based on leave-one-out cross validation 

on the training set for all parameter combinations of log2C ranging from −4 to 12 and log2γ from −12 

to 8. Figure 4 and Figure S1 show the influence of each parameter with the other one fixed to the 

optimal values on the model performance in Set 1, Set 2, Set 3 and Set 4, respectively. The results 

show that the SVR models reach the best performance when C = 128, γ = 0.0078 in Set 1, C = 262144, 

γ = 9.77 × 10−4 in Set 2, C = 131072, γ = 3.05 × 10−5 in Set 3, and C = 32768, γ = 1.53 × 10−5 in Set 4. 

Subsequently, we selected optimal variables for SVR by varying numbers of components from 1 to 1536.  

As shown in Table 1, when all the 1536 molecular descriptors were used as the input variables of 

SVR, the obtained regression models exhibited relatively weak Qex
2 of ~0.611 for the test sets despite 

the good determination coefficients (R2 = ~0.752) for the training sets, which reveals that the number 

of selected features probably have an potential effect on the prediction ability of models. Thus, the 

stepwise method was used to select the proper number of variables for each subset, and finally 21, 12, 

18 and 12 input variables were obtained for Set 1, Set 2, Set 3 and Set 4, respectively. The resulting 

correlations between the experimental and predicted LogB for all the compounds were shown in 

Figure 3, indicating that the SVM models are superior to MLR and PLS for the OB prediction. Such 

results imply that the nonlinear relationship between the bioavailability and molecular structures is 

more notable than the linear relationship. 

Figure 4. Contour plots of the optimization error for SVR when optimizing the parameters 

γ and C for the prediction of bioavailability for the training (a) and test (b) sets in Set 1  

and Set 2.  
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Figure 4. Cont. 

 

3.4. Comparison of the MLR, PLS and SVR Models 

In this work, three regression methods were employed to construct reasonable predictive models for 

the OB values of candidate drugs. Two methods are based on the linear regression, MLR and PLS; one 

other method is the network SVR based on the nonlinear regression. In this work, F-test was applied to 

investigate the performance difference of the three models [42].  
2 2

1 2 1 2( , ) SEP / SEPF n n =  

where, n1 and n2 are the number of samples in the test set, SEP1
2 is the square from the higher and 

SEP2
2 is the square from lower root mean square errors of the two compared models. When comparing 

the performances of SVR with MLR and PLS, F-values are 1.66, 0.56 and 0.92 for SVR/MLR in  

Set 1, Set 3 and Set 4, and 0.5, 0.48 and 0.88 for SVR/PLS in each subset, respectively, which are 

lower than the critical ones (1.74 for Set 1, 1.65 for Set 3, and 1.66 for Set 4). As for Set 2, its F-values 

are 2.57 for SVR/MLR, and 2.68 for SVR/PLS, which are much higher than the critical one (1.90). 
This indicates no statistically significant difference at a level of significance of 0.05 in Set 1, Set 3 and  

Set 4, except for Set 2. As for the two linear models, the calculated F-values are also lower than the 
critical ones for the four subsets. The results show that at a level of significance of 0.05 the differences 

in the performances of the mean SEP in both linear models differ only randomly. In summary, the 

statistical tests reveal that the performances of the MLR, PLS and SVR models are comparable with 

each other except for the SVR model in Set 3. This implies that the linear and non-linear methods are 

all appropriate for predicting the human bioavailability of candidate drugs.  

For the SVR models, their good performances partly benefits from the fact that it can model 

nonlinear relationships between dependent and independent variables, even without prior knowledge 

of the form of the nonlinearity. While for the traditional neural network approaches, they have suffered 
difficulties with generalization, producing models that can overfit the data, which is induced by the use 

of optimalization algorithms used for parameter selection and the statistical measures. In addition, 

instead of minimizing the observed training error as the traditional methods, SVR attempts to minimize 

the generalization error bound so as to achieve good generalized performance. Moreover, since SVR 

works by solving a constrained quadratic problem where the convex objective function for 

minimization is given by the combination of a loss function with a regularization term, the introduction 
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of the ε value and the regularization parameter C leads to better robust properties of SVR for various 

signal-to-noise ratios. 

The prediction ability of QSAR models depends heavily on two factors, including the molecular 

descriptors carrying enough information of molecular structures for the interpretation of the 

activity/property, and the statistical method employed [43]. For the linear MLR method, features 

should represent the maximum information in activity variations, the minimum collinearity, and the 

well-understood relationships to the responses. In this work, the MLR-extracted descriptors, the R3v+, 

R2p+ for Set 1, G2e, R1e for Set 2, O-056, nNq for Set 3, and nArCNO, nNq for Set 4 play important 

roles in understanding the mechanism of human bioavailability of candidate drugs. For the MLR 

method, although it only allow easy model interpretation of what should be changed in a structure to 

improve the molecular biological activity, the prediction ability of such model obtained in this work 

still shows its reasonability, which indicates that the MLR method are reliable for the prediction of 

human bioavailability. 

PLS is a useful linear technique commonly used in QSAR analysis. In this work, four conventional 

quantitative structure-logOB relationships were derived by the PLS analysis. As we can see from the 

Table 1, PLS is uniformly comparable to MLR on the datasets. The performance of PLS is slightly 

better that of MLR in the prediction ability and cross-validation for the Set 1 and Set 2 data. While for 

the Set 3 and Set 4 data, PLS performs worse than MLR in the prediction process. Compared with 

MLR, the advantage of PLS is that it is a bilinear modeling method in which the original X (predictor 

variables) is projected onto a small number of orthogonal latent variables (LVs) to simplify the 

relationship between X and Y (response variables) and mitigate the colinearity problem, which is thus 

relatively favorable for the prediction of bioavailability.  

In summary, the results of MLR, PLS and SVR models are indicative of their abilities to 

accommodate linearity and nonlinearity in the bioavailability and structural descriptors. In particular, 

the advantages of SVR, such as robustness, no additional test requirement, and optimal prediction 

ability were validated in our work. 

4. Conclusions  

Automatically predicting human bioavailability is a very important issue because it helps to prevent 

industrial failure, human toxicity and poor drug activity. However, the application of existing OB 

models has been limited by the ignorance of the presence of specific membrane transport systems and 

intracellular metabolizing enzymes in the gastrointestinal tract. In this work, for the first time, we have 

constructed a novel chemometric method for prediction of human OB by integrating the information of 

the ATP-dependent efflux protein P-gp and the cytochrome P4503A4 and P4502D6 metabolizing 

enzymes, the important defence limiting the absorption of candidate drugs. To establish in silico 

models for predicting OB values of molecules, the two linear methods MLR and PLS, and the  

non-linear method SVR were attempted in the present work. It can be concluded from our results that 

the performance of MLR, PLS and SVR are all reliable, as indicated by their correlation R2 and 

prediction error residues. Thus, they could be helpful as complementary tools applied in “screening 

prior to synthesis” procedures for prediction of OB values. 
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