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Abstract

Background: Given the complex nature of cardiovascular disease (CVD), information derived from a systems-level
will allow us to fully interrogate features of CVD to better understand disease pathogenesis and to identify new
drug targets.

Results: Here, we describe a systematic assessment of the multi-layer interactions underlying cardiovascular drugs,
targets, genes and disorders to reveal comprehensive insights into cardiovascular systems biology and pharmacology.
We have identified 206 effect-mediating drug targets, which are modulated by 254 unique drugs, of which, 43% display
activities across different protein families (sequence similarity < 30%), highlighting the fact that multitarget therapy is
suitable for CVD. Although there is little overlap between cardiovascular protein targets and disease genes, the two
groups have similar pleiotropy and intimate relationships in the human disease gene-gene and cellular networks,
supporting their similar characteristics in disease development and response to therapy. We also characterize the
relationships between different cardiovascular disorders, which reveal that they share more etiological commonalities
with each other rooted in the global disease-disease networks. Furthermore, the disease modular analysis demonstrates
apparent molecular connection between 227 cardiovascular disease pairs.

Conclusions: All these provide important consensus as to the cause, prevention, and treatment of various CVD disorders
from systems-level perspective.

Keywords: Cardiovascular disease, Network pharmacology, Network analysis, Drug discovery, Drug-target network,
Gene-disease network
Background
In recent years, the prospect for the cardiovascular dis-
ease (CVD) pharmacotherapy seems to have ‘hit the
wall’, with multiple high-profile trial failures and declin-
ing industrial interest. Reasons for such predicament
might include an intensive regulatory environment, a
competitive market, the elevated bar of existing medi-
cines for further innovation and the increasing cost of
mega-trials. However, the most important and intrinsic
reason comes up to the lack of mechanistic understand-
ing of drug action and the complicated etiologies [1-4].
Over the past 50 years, sorts of blockbusters for the

therapy of CVD have been sprung up, such as statins,
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angiotensin-converting enzyme (ACE) inhibitors, anti-
platelet agents and beta-blockers. However, many of
these drugs play functional roles in biological processes
outside the scope of the drug’s intended effects [5,6].
This often leads to unexpected situations at various
stages during the drug discovery process. For example,
torcetrapib (Pfizer, New York, NY, USA), an inhibitor of
cholesteryl ester transfer protein (CETP), failed in the
Investigation of Lipid Level Management to Understand
Its Impact in Atherosclerotic Events (ILLUMINATE) trial
for the increased risk of mortality and morbidity [7], due to
the off-target effects of torcetrapib on hypertension [8]. On
the contrary, the unpredictable off-target interaction may
also give rise to safety effects on patients. For example, sta-
tins, originally designed to target elevated lipids for the
treatment of atherosclerosis, might also confer cardiovas-
cular benefit with their anti-inflammatory effects, inde-
pendent of LDL-lowering effects [9].
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Indeed, a growing body of post-genomic biology (as
reflected for acquisition of high-throughput genomic,
transcriptomic, proteomic, and metabolomic data) has
been revealing a far more complex portrait of drug ac-
tions. It is appreciated that many drugs with a specific ef-
ficacy actually act on multiple protein targets [10,11].
This so-called polypharmacology is an undesirable prop-
erty in the conventional reductionist paradigm and might
be more suitable to view through the lens of systems-
based approaches [11].
The complexity of CVD also resists traditional efforts

which have been applied to identify a single gene or
pathway to treat the disease [3,12]. Common forms of
CVD are caused by multiple genetic factors, each of
which contributes modestly to the disease risk, and also
environmental factors. Genetically, it has become evi-
dent that many human diseases cannot be attributed to
the malfunction of a single gene but to complex interac-
tions among multiple genetic variants. Perturbations in
several genes might only make subtle contributions to
the susceptibility of a particular individual [3]. Therefore,
the disease causations should be studied on the basis of
the entire body of knowledge including all genes that are
associated with the clinical traits. Epidemiologically, car-
diovascular events are not only related to environmental
factors such as smoking, diet and physical activity but
also linked to other systemic disorders such as hyperten-
sion, diabetes, obesity, or thyroid disease [4]. Traditional
research efforts normally address these individual risk
factors in isolation, even though they are believed to
concomitantly contribute to the disease pathogenesis
(disease comorbidity) [13]. Accordingly, a systems-based
approach integrating all the potential related factors in-
volved in the pathologies and disease treatment is required
to address these complex issues.
To quantitatively characterize the complex relationships

between cardiovascular drugs, targets, disease genes and
disorders, we construct a series of networked relationships
including cardiovascular drug-target, gene-disease, drug-
disease, and protein-protein interaction networks by inte-
grating publicly available drug data (See Figure 1 for an
overview of the analysis process). We believe that within-
and between-studies of these networks will provide a more
comprehensive and profound understanding of the cardio-
vascular disease pathogenesis and drug action. Herein, we
apply integrated network analysis and mainly focus on
three areas that are critical to cardiovascular systems biol-
ogy and pharmacology: 1) the extent of polypharmacologi-
cal effects of cardiovascular agents, 2) the relationships
between drug targets and disease genes in biological net-
works, and 3) the genetic and molecular connections be-
tween different cardiovascular diseases. In addition, all
these CVD-associated factors and their multi-layer inter-
actions are integrated and provided in a comprehensive
database CVDSP for readers to explore information inter-
actively (http://sm.nwsuaf.edu.cn/lsp/cvdsp.php).

Methods
Compiling cardiovascular drug and their therapeutic targets
The complete cardiovascular drug-target information was
downloaded from the DrugBank database [14], therapeutic
target database (TTD) [15] and FDA orange book [16] as
of November 2012. The resulting list of drug targets was
manually inspected one by one by literature curation to
assure the quality of the data. We classified drugs and tar-
get proteins according to therapeutic areas and functional
family, respectively. The reproducible set of interactions,
pharmacological activities of drugs and function annota-
tions of targets were provided in supplementary informa-
tion as a resource for researchers who are interested in the
cardiovascular pharmacology (Additional file 1). The cur-
ation of the drug-target data set involved the identification
of 254 approved cardiovascular drugs with 206 successful
cardiovascular protein targets. This data set was used to
build the drug-target network.

Compiling genetic phenotypes and phenotype-associated
genes
The most complete and best-curated list of known
phenotype-gene associations is maintained in the Morbid
Map (MM) of the Online Mendelian Inheritance in Man
(OMIM) [17]. Each entry of the MM is composed of four
fields, the name of the disorder, the associated gene sym-
bols, its corresponding OMIM id, and the chromosomal
location. We analyzed the complete data set and per-
formed a manual curation following procedure of the vi-
sionary study by Goh et al. [18]. We downloaded the MM
file on January 2013. Out of 6,252 MM entries, we selected
4,811 entries with the “(3)” tag, for which there is strong
evidence that at least one mutation in the particular gene
is causative to the phenotype. We then parsed these 4,811
phenotype terms into 1,775 distinct phenotypes by mer-
ging phenotype subtypes of a single phenotype, based on
their given names and corresponding Medical Subject
Headings (MeSH) [19] vocabulary on January, 2013. The
merging was done first automatically and then each entry
was verified manually. Each disease was then assigned a
unique disease ID.
The curated data set contained 1,775 phenotypes and

3,039 associated genes (Additional file 1), of which 98
are cardiovascular disorders associated with 268 genes
(Additional file 1). In addition, 111 disease genes encode
the cardiovascular target proteins, of which 35 overlaps
the cardiovascular genes associated with 26 cardiovascu-
lar disorders (Additional file 1).
We constructed disease gene-gene network (DGG net-

work; Additional file 1) and gene disease-disease network
(GDD network; Additional file 1) which were derivative
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Figure 1 Network analysis serves an integral role in cardiovascular systems pharmacology. The drug–target network is built by connecting
the cardiovascular drugs with their corresponding cardiovascular targets. Starting from this graph, it generates two biologically relevant network
projections: the target–target network and the drug-drug network. In the target–target network, nodes represent targets, and two protein targets
are connected to each other if they share at least one drug. In the drug–drug network, nodes represent drugs, and two drugs are connected if they
are associated with the same protein target. A bipartite graph of gene-disease associations is constructed in which a gene and a disorder
are connected if mutations in that gene are implicated in that disorder. From the gene-disease network, two biologically relevant network
projections were generated. In the human disease gene-gene network, every two genes are applied to connect with a common disease based on
the global gene-disease associations. The gene disease-disease network is transformed by connecting two disorders if they are associated with the
same gene based on the gene-disorder associations. The drug-disease network is constructed by mapped the approved cardiovascular drugs to
their corresponding indications. Physical interactions between proteins can also be used to produce the human protein-protein interaction (PPI)
network. For cardiovascular pharmacology, these interaction networks will provide a global template for computational and mathematical systems
modeling, simulation, and prediction.
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from the gene-disease associations (Additional file 1). In
the GG network, every two genes are applied to connect
with a common disease based on the global gene-disease
associations. Similarly, the GDD network is transformed
by connecting two disorders if they are associated with
the same gene in the gene-disorder associations.

Generating a disease modular network
A network was generated by determining the first-order
interactions of cardiovascular gene products associated
with a given phenotypic subgroup in the PPI network.
Interactions of the cardiovascular gene products were
integrated into a network by always including direct in-
teractions between cardiovascular gene products, and
only including interactions with other proteins above a
network score threshold. The network score for a pro-
tein is the amount of interactions to cardiovascular
gene products out of all interaction partners of the
protein, making networks consisting of proteins with many
interactions less important and reducing noise from highly
interacting proteins for non-cardiovascular proteins. The
median of all scores for all non-cardiovascular proteins is
0.25 and is used as the threshold-score [20]. Detailed views
of the networks can be seen in Additional file 1.

Compiling a high-quality, comprehensive list of binary
protein-protein interactions
Human protein-protein interaction (PPI) set were as-
sembled from HINT (High-quality protein interactomes)
[21] updated June 3, 2013. HINT is a database of high-
quality PPIs integrated from various sources and filtered to
remove low-quality/erroneous interactions. The resulting
set of PPIs contained 28,629 non-self-interacting, non-
redundant interactions between 8,495 proteins, of which
132 were cardiovascular targets and 191 were cardiovascu-
lar gene products mapped by Gene names. The list of PPIs
used is available at the online database CVDSP (http://sm.
nwsuaf.edu.cn/lsp/cvdsp.php).

Assessing molecular connections between disorders
To quantify the cellular network-level relationship be-
tween pair of phenotypes, we assessed the molecular
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Table 1 Classification of cardiovascular drugs

Drug class Numbers

B01 Antithrombotic agents 42

C01 Cardiac therapy 50

C02 Antihypertensives 34

C03 Diuretics 23

C04 Peripheral vasodilators 7

C05 Vasoprotectives 15

C07 Beta blocking agents 22

C08 Calcium channel blockers 15

C09 Agents acting on the renin-angiotensin system 23

C10 Lipid modifying agents 18

X Dual function 7
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associations for each pair of phenotype modules by their
shared protein-protein interactions in the disease modu-
lar network. Number of shared protein-protein interac-
tions is the number of protein-protein interactions that
link genes between the two modules. The significance of
shared protein-protein interactions was measured by
randomization tests of the resulting network. For two
phenotype modules, we firstly randomly generated two
modules with the same number of disease genes. We
then calculated the numbers of shared protein-protein
interactions between the two random modules. This
procedure was performed for 10, 000 times to obtain
significant statistics and P values for the two disorders.
All pairs of disorders involving shared protein-protein
interactions and P values are listed in Additional file 1.

Topological features of a network
The degree of a node is the number of edges connecting
to the node. The shortest path between two nodes is the
path with the smallest number of links between the se-
lected nodes. The betweenness (centrality) denotes the
proportion of all shortest paths between node pairs in a
network passing through the measured node, indicating
the relative importance of the particular node in network
global connectivity. Closeness (centrality) is defined as
the inverse sum of shortest distances to all other nodes
from a focal node, indicating the expected time from a
focal node to reach others. The clustering coefficient is
defined as Ci = 2n/ki (ki – 1), where n is the number of
direct links connecting the ki nearest neighbors of node
i. The average of Ci over all nodes of a network assesses
network modularity.

Calculating the functional similarity between
cardiovascular targets and genes
To validate the intimate relationship between cardiovascu-
lar targets and genes derived from the network properties,
we calculated the GO-based semantic similarity between
cardiovascular targets and genes. We firstly downloaded
Biological Process (BP), Cellular Component (CC), or
Molecular Function (MF) branches of the Gene Ontology
(GO) from the GO database [22]. GO-based semantic
similarity scores (GSS) between cardiovascular targets and
genes were calculated according to Resnik [23], using the
csbl.go R package [24] selecting the option to use all three
ontologies. We calculated the average GSS of all pairs of
cardiovascular target and gene. Random controls were ob-
tained by selecting the same number of genes 10, 000 times
randomly to control for cardiovascular genes. All statistics
are shown in Additional file 1.

Database development
To accompany the findings from this study, an online
database CVDSP (http://sm.nwsuaf.edu.cn/lsp/ cvdsp.php)
was developed to allow researchers to access the under-
lying information in a user-friendly manner. We have in-
cluded all of our data sets in this database. The drug-target
interactions, gen-phenotype associations, drug-indication
associations and target-gene relationships as well as their
derivate networks such as drug-drug and gene-gene net-
works can be explored interactively. We will regularly up-
date our data sets and the website to keep up with the
growth of the databases used.

Statistical Analysis
All the t-tests and z-tests were done in Mathematica
(Wolfram Research) using the HypothesisTests package.
Kolmogorov-Smirnov and Wilcoxon rank sum tests were
done in Matlab (Mathworks) using the “kstest2” and
“ranksum” commands, respectively. All the error terms
in the text and the figures are the standard errors.

Results
Classification of cardiovascular drugs and their
therapeutic targets
The careful curation of the drug-target data set involves
the identification of approved cardiovascular drugs with
successful cardiovascular protein targets. This results
in a list of 254 drugs that act on 206 protein targets
(Additional file 1). Eleven drug classes are identified ac-
cording to the Anatomical Therapeutic Chemical (ATC)
rule. The biggest ATC class in the data set is for cardiac
therapy (49 drugs), followed by antithrombotic agents
(42 drugs), antihypertensives (34 drugs), agents acting
on the renin-angiotensin system (23 drugs), diuretics
(23 drugs), beta blockers (22 drugs), lipid modifying agents
(18 drugs), vasoprotectives (15 drugs), calcium channel
blockers (15 drugs), peripheral vasodilators (7 drugs) and
etc. (Table 1). The drug-target association data show that
59 receptors are the main targets for the cardiovascular
agents, weighing ~28.6% of all cardiovascular targets
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(Table 2). G protein-coupled receptors (GPCRs) are
the most common class of the receptor targets, com-
prising ~72.9% of all cardiovascular receptors. ~34.6%
of the drugs target GPCRs and are mainly involved in
cardiac and anti-hypertension therapies. This is con-
sistent with the central role of GPCRs in cardiovascular
biology [25]. The other common receptors are nuclear
receptors, comprising ~15.2% of all cardiovascular re-
ceptor targets, and these receptors are mainly targeted
by vasoprotectives.
Transporters make up the second largest group of

drug targets: 65 proteins (~31.6% of all cardiovascular
targets) are transporters, and ~81.5% of them are ion
channels targeted by 63 drugs (~25% of all approved car-
diovascular drugs). Ion channels have been commonly
targeted by calcium channel blockers. Solute carriers,
the second largest transporter target class, are mostly
targeted by diuretics.
Enzymes are the third key class of cardiovascular tar-

gets, with 55 proteins in the class, comprising ~26.7% of
all cardiovascular targets. Among the enzyme target list,
Hydrolases (EC 3) are dominant, comprising more than
half of all cardiovascular enzyme targets. They are fol-
lowed by oxidoreductases (EC 1), which comprises ~22%
of all cardiovascular enzyme targets. Antithrombotic agents
and the agents acting on the renin-angiotensin system
(RAS) normally hit the enzyme targets. Other common
Table 2 Classification of cardiovascular targets

Target class Numbers Target child class Numbers

Receptor 68 GPCR 52

Nuclear Receptor 9

Other Receptor 7

Transporter 65 Ion Channel 53

Solute Carrier 8

Other Transporter 4

Enzyme 55 EC1 12

EC2 6

EC3 30

EC4 6

EC5 1

Other 27 Cytokine 15

Integrins 3

Annexin 2

Calmodulin 2

Antifibrotic Factor 1

Calnexin 1

Calreticulin 1

Fibrinogen 1

Transcription Factor 1
enzyme targets include 6 transferases (EC 2), 6 lyases
(EC 4) and 1 isomerase (EC 5).

Quantify the polypharmacology for cardiovascular drugs
and targets
Massive studies have revealed that the drug promiscuity
is a phenomenon much more common than previously
thought and is critically important for drug discovery,
especially for the complex diseases such as CVD, which
is usually multiple genes involved diseases [26-28]. For
example, amiodarone exerts its antiarrhythmic effect by
acting on adrenergic receptors and potassium and cal-
cium channels, simultaneously (Additional file 1). How-
ever, there is still lack of quantification of the degree
of polypharmacological effects of cardiovascular drugs.
The drug-target network offers a panoramic view for the
drug-target interaction landscape, permitting to explore
comprehensive information on cardiovascular pharma-
cology from molecules to systems, including the overall
degree of polypharmacological effects of cardiovascular
agents on various targets [6]. Here, the cardiovascular
drug–target network was built by connecting the 254 ap-
proved cardiovascular drugs with their corresponding
206 cardiovascular targets (Figure 2a). The overall net-
work contains 701 drug-target connections, in which
198 drugs (~78% of the total) and 165 targets (~80% of
the total) compose the largest connected component of
the network (Figure 2a), reflecting high interconnected-
ness between the drugs and their targets. To quantify
the polypharmacological effect, we counted the number
of cardiovascular targets for each drug, that is, the de-
gree for each drug node in the drug-target network
(See Methods). The degree distribution of drug nodes indi-
cates that most drugs acting on more than one target, and
the average number of target proteins per drug is 2.8.
Interestingly, some drugs even have dozens of targets, such
as Verapamil (16 targets) and dronedarone (20 targets)
(Figure 2b). These properties suggest the promiscuity of
cardiovascular drugs.
However, the above measurement neglects the fact

that some drugs target homologous proteins, which can
inflate the polypharmacological effects of these drugs.
As we know, drugs that target homologous proteins
should be less promiscuous than those have demon-
strable activity across different protein families [29]. For
example, the activity of cryptenamine, an antihyperten-
sive drug, mainly depends on muscarinic acetylcholine
receptors, including CHRM1, CHRM2, CHRM3, CHRM4
and CHRM5 (Additional file 1). In contrast, dronedarone,
an antiarrhythmic agent, acts on multiple targets including
sodium, potassium and calcium channels and various ad-
renergic receptors for management of atrial fibrillation
(Additional file 1). Obviously, the degree of polypharma-
cology for cyptenamine is correspondingly weaker than



Figure 2 The drug–target network. (a) The drug-target network was generated from the known associations between FDA-approved cardiovascular
drugs and their target proteins. Nodes represent drugs (shown as circles) and targets (shown as rectangles). A link is placed between a drug and a target
node if the protein is a known target of the drug. The size of the drug (protein) node is proportional to the number of the relevant targets (the number
of the relevant drugs). Drugs are colored according to their Anatomical Therapeutic Chemical (ATC) Classification, and targets are colored according to
protein family obtained from the Uniprot database. (b) Distribution of target proteins for drugs (drug node degrees) in the drug-target network. This
distribution shows most cardiovascular drugs target a small number of targets, but some of them have many targets. (c) Distribution of drugs for
their targets (target node degrees) in the drug-target network. Most targets have a few drugs, but some targets have many drugs.
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that of dronedarone. Indeed, of all 145 promiscuous
drugs in our dataset, more than 65% have been found
to display activities against some proteins from the
similar family (sequence similarity ≥ 30%). This is also
reflected by the target-target network, in which nodes
represent targets, and two protein targets are connected
to each other if they share at least one drug (Additional
file 1). In this network, 200 out of 206 targets are con-
nected to other proteins. Drugs with multiple targets
are responsible for this high interconnectedness. It is evi-
dent that some specific target classes, such as voltage-
dependent calcium channel protein family, tend to cluster
together with common drugs (calcium channel blockers).
Moreover, it is also found that these targets mostly belong
to the same functional family.
To eliminate this bias effect caused by homologous

proteins in the polypharmacology analysis, we have con-
flated the homology target proteins into their specific
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families according to rule of sequence similarity ≥ 30% to
build a modified drug-target network. After removing
the paralogous genes, the degree distributions of the
drugs between the modified and original drug-target
network only show a slight variation (p = 0.0108, Two-
sample Kolmogorov-Smirnov test; Figure 2b). For ex-
ample, the number of drugs with one target increases
from 109 to 145. However, although the degrees of some
drugs are reduced, we still observe a significant propor-
tion (43%) of drugs target more than one protein, indi-
cating the promiscuous nature of cardiovascular drugs is
not significantly changed. Such polypharmacological in-
formation enables a rational approach to selecting mul-
tiple candidates for CVD treatment. It should be noted
that, most of these known promiscuous drugs are dis-
covered based on the traditional phenotypic-screening
assays [10,30], which normally did not distinguish the
explicit therapeutic targets and their underlying molecular
interactions [31]. Therefore, follow-up studies concerning
polypharmacological mechanisms of cardiovascular targets
are very important to rationally design polypharmacologi-
cal drugs.

Explore the interactions between cardiovascular targets
and genes
To investigate the genetic feature of cardiovascular tar-
gets and detect the potential of cardiovascular genes to
be therapeutic targets, it is necessary to analyze the rela-
tionships between cardiovascular targets and genes form
a network perspective. We firstly compared the plei-
otropy between them, which can be quantified by the
number of disorders (node degree) corresponding to their
mutants in the gene-disease network [32] (Additional
file 1). The curated dataset contain 1,775 phenotypes
and 3,039 associated genes (Additional file 1), of which
98 are cardiovascular phenotypes associated with 268
genes (Additional file 1). In addition, 111 disease genes
encode the cardiovascular target proteins, of which 35
overlap the cardiovascular genes associated with 26 car-
diovascular phenotypes (Additional file 1). As shown in
Figure 3a, cardiovascular genes are on average involved
in 2.2 ± 0.1 disorders, which is not significant different
from that of cardiovascular targets (2.05 ± 0.13 disorders;
p = 0.45, Wilcoxon rank-sum test). Both of them are sig-
nificantly more than the average of all genes (1.5 ± 0.02
phenotypes; p < 10−4, Wilcoxon rank-sum test; Figure 3a).
This indicates that cardiovascular targets and genes have
similar degree of pleiotropy.
Data also show that these two groups stay close to

each other in the disease gene-gene network (DGG net-
work), where two genes connect with common diseases
based on the global gene-disease associations (Figure 3c
and Additional file 1). In the DGG network, 2,519 of
3,039 disease genes are connected to other disease genes,
and 2,013 genes belong to a “giant component”. Ninety
two genes that encode the cardiovascular targets and
249 cardiovascular genes are included in this network
(Figure 3c). By measuring the minimum shortest distances
between the targets and genes [10], the two groups are
shown more intimate compared with those of the ran-
domized expectations (Figure 3d, p < 10−5, Two-sample
Kolmogorov-Smirnov test). Nearly 75% cardiovascular tar-
gets overlap with the cardiovascular genes or are in the
first neighbors of them. Consistently, we also find that car-
diovascular targets and genes have similar degree distribu-
tions (p > 10−2, Wilcoxon rank-sum test; Figure 3b) in the
DGG network. As links in the DGG network represent
the related phenotypic associations between two genes,
the intimate relationships suggest that most of these tar-
gets are etiologically related factors, which provide further
clues for disease understanding and treatment.
Previous work has shown that distinct genes that are

related to same disorders tend to interact in a particular
functional module [33]. Therefore, we believe that the
genetic closeness between the cardiovascular targets and
genes might have tendencies to gather together in the
real cellular network. To test this, we quantify the rela-
tionships between the cardiovascular targets and genes
in the human protein-protein interaction (PPI) net-
works by similar approach used in the DGG network
(See Additional file 1). It is found there are 132 target pro-
teins and 191 cardiovascular gene products in the PPI net-
work. As expected, we observe a clear enrichment for
cardiovascular targets to genes in the region of lower short-
est distances compared with the randomized target groups
of similar size (p < 10−6, Two-sample Kolmogorov-Smirnov
test; Figure 3e). This is supported by the similar topological
features between the targets and gene products in the PPI
network (Additional file 1). This suggests that although
many cardiovascular targets are not encoded by cardiovas-
cular disease genes, they might also participate in the same
physiological and pathological processes.
Finally, to validate this intimate relationship between

cardiovascular targets and genes derived from the net-
work properties, we also calculated their functional simi-
larity distributions based on the GO-based semantic
similarity (See Methods), and find significant similarity
of GO terms between the two groups with respect to
random controls, confirming their close relationships
(Additional file 1; p = 0).
These results indicate that most cardiovascular drugs

are etiology-specific agents that target the actual cause
of the disease or etiologically related factors, which is a
little unexpected as many types of CVDs are strongly in-
fluenced by non-genetic factors. More importantly, the
intimate relationships between cardiovascular targets
and genes could help understand the mechanism of
action of cardiovascular targets and provide a direct



Figure 3 Relationships between cardiovascular targets and genes. (a) The average number of diseases associated with different gene classes
from the gene-gene network (GG network): all genes, cardiovascular genes and genes that encode cardiovascular targets. (b) Average degree of
different gene classes in the GG network. (c) The network only includes cardiovascular genes and genes that encode cardiovascular targets extracted
from the overall GG network, in which two genes are connected if they are involved in the same disorder. This subnetwork shows that most genes that
encode cardiovascular targets and cardiovascular genes gather into a complete network. Red, pink and green represent cardiovascular genes, genes that
encode cardiovascular targets and overlapped genes, respectively. (d) Distribution of the shortest distances (green) between drug targets and disease
genes in the GG network compared with that (tan) between random groups of genes. There is an enhancement at the distances 0 and 1. (e) Distribution
of the shortest distances (yellow) between drug targets and disease genes in the GG network compared with that (blue) between random groups
of genes.
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evidence for target identification from the cardiovascular
genes [28].

Explore the relationships between cardiovascular disorders
During these years, huge efforts have been devoted to
the use of networks (disease network) to integrate differ-
ent genetic, proteomic, metabolic and phenotypic data-
sets to elucidate the entangled origins of many diseases
[34-36]. Here, to examine the relationship between car-
diovascular disorders, we generated a gene disease-disease
network (GDD network; Additional file 1), which is trans-
formed by connecting two disorders if they are associated
with the same gene based on the gene-disorder associa-
tions, The GDD network consists of 1216 disorder nodes
connected by 2858 links, where the largest component
comprises 942 nodes and 2596 links. Of 98 cardiovascular
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disorders in the OMIM, 64 have at least one link to other
disorders and are included in this network. The number of
genes involved in cardiovascular phenotypes decreases rap-
idly (Additional file 1): most diseases are related to few
genes, whereas some related to dozens of genes, such
as cardiomyopathy (45 genes), coronary artery disease
(15 genes) and myocardial infarction (15 genes). The gene
distribution may correlate with the complexity of each dis-
order in some extent. Generally, Mendelian disorders such
as Marfan syndrome are mostly derived from mutations in
one or several genes, whereas complex disorders such as
myocardial infarction are related to multiple genetic deter-
minants. In addition, the number of degree of the cardio-
vascular disorders in the GDD network display a broad
distribution (Additional file 1) and most of them are con-
nected to more than one disease, especially a few disorders
such as cardiomyopathy (degree = 43), Noonan syndrome
(degree = 24) and myocardial infarction (degree = 24) are
connected to a large number of distinct disorders. On
average, the degree of cardiovascular disorders (6.2 ± 0.7
disorders) is significantly bigger than that of the network
average (4.7 ± 0.2 disorders; p = 0.0009, Wilcoxon rank-
sum test; Additional file 1). This prominence of the highly
connected disorders should mainly arise from the muta-
tions that are involved in multiple disorders.
Most cardiovascular disorders are visibly clustered

in the network (Additional file 1; see Figure 4a for car-
diovascular disorder associations). To quantify this, we
measured the fraction of cardiovascular disorders with
the reference to the distance from an origin disease node
in the network. If these disorders are not clustered in
certain regions, starting from one cardiovascular dis-
order would not be different from a random node. In-
stead, we observed a surprising enrichment in the first
and the second neighbors for an origin node of CVD
(Figure 4b), indicating a strong trend of concentrating
cardiovascular disorders in the GDD network. This means
that most cardiovascular disorders share genetic origins
with each other.
We further examined the extent to which cardiovascu-

lar disorders aggregate in the GDD network. Firstly,we
attempted to extract all types of these disorders by dis-
connecting them from the whole network, and found
that they form many isolated sub-networks (Figure 4a).
The largest sub-network contains 31 disorders, most of
which are cardiogenic traits, such as cardiomyopathy,
long QT syndrome and atrial fibrillation. The second lar-
gest cluster includes the major vascular diseases, such as
stroke, myocardial infarction and atherosclerosis. Fol-
lowing on are Mendelian disorders that form small iso-
lated networks consisting of 1 ~ 3 nodes. These results
indicate that the isolated networks may represent rela-
tively independent pathological mechanisms of cardio-
vascular disorders. This reminds us that drugs used for
one disease might also affect other disorders of the sub-
network. For example, an anticoagulant, acenocoumarol,
can be used to treat various vascular diseases including
deep vein thrombosis, ischemic attack, myocardial in-
farction and thromboembolism. The above analysis fur-
ther suggests that some other anticoagulants, such as
defibrotide, prasugrel and sulodexide, might also have
potentials to treat blood coagulation-caused CVDs.
We then reconnected these cardiovascular disorders to

their direct neighbors (non-cardiovascular disorders) in
the GDD network. Surprisingly, nearly 90% (61 disorders)
of these disorders are re-accumulated into a complete net-
work (Additional file 1), confirming the close associa-
tions between different CVD-associated sub-networks.
In addition, there are 197 non-cardiovascular disorders
(70.4% of all disorder node) in this reconnected network,
most of which are enriched by some common cardiovas-
cular disorders such as cardiomyopathy and myocardial
infarction. This prominence of non-cardiovascular disor-
ders can be partly attributed to the involvement of the
cardiovascular factor in various disease conditions [37],
such as diabetic nephropathy, pheochromocytoma and
diabetes mellitus. This also prompts us to seek drugs for
CVD treatment from those drugs that are applied for
treating other diseases. For example, the antidepressant
agent, paroxetine, has been under evaluation in clinical
trials for its potential value in preventing heart attacks
(www.clinicaltrials.gov).

Identify the molecular connections between
cardiovascular disorders
GDD network that covers the discrete genetic informa-
tion might not be sufficient to explain the molecular
processes for disease associations. Here, we further try
to explore the molecular connections between different
cardiovascular disorders based on their cellular modules
encoded by PPI network. Firstly, we created the disease
modules for each disorder using the interaction patterns
of their associated gene products in the PPI network
[20] (See Methods). This results in a highly intercon-
nected disease modular network, which includes 72 dis-
ease modules (Additional file 1). The figure shows that
genes in each disorder have a strong tendency to inter-
act with each other at the protein level. For each pair
of diseases, we assessed their molecular connections
by measuring the significance of their shared PPIs by
randomization tests of the resulting network [38] (the
procedure is described in detail in Methods). The full sets
of assessments include 2,556 disease pairs, of which 227
(8.88%) share significantly more protein-protein interac-
tions compared with that of a random control (Additional
file 1; p < 0.01, z-test). This information can assist us in
identifying new molecular connections between disorders
alongside their common genetic origins. For example,

http://www.clinicaltrials.gov


Figure 4 Relationships between different cardiovascular disorders. (a) Selected networks from the gene disease-disease network (GDD network).
This network is composed by cardiovascular disorders separated from the GDD network, where each node corresponds to a disorder and two disorders
are linked if there is a gene involved in both. The size of each node corresponds to the number of genes that are implicated in this disease. This network
shows many cardiovascular disorders tend to related to other cardiovascular disorders. (b) Fraction of cardiovascular disorders starting from either a
cardiovascular disorder or a random disorder in the GDD network with respect to distance. This figure quantitatively validates the bias of cardiovascular
disorders toward clustering in the GDD network. Two examples of cardiovascular disease pairs with significant protein-protein interactions: (c) Ischemic
stroke and myocardial infarction (PPIs = 15; p << 0.01, z-test), and (d) Long QT syndrome and Carney complex (PPIs = 3; p = 1.88E-57, z-test). The blue-
filled rectangles are cardiovascular disease genes. The rectangles with red border are cardiovascular targets. The blue-filled rectangles with red border are
both cardiovascular targets and genes. Other proteins are the neighbors of cardiovascular genes. See Additional file 1for the global cardiovascular disease
modular network.
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except for the common disease gene JAG1 between
Tetralogy of Fallot and Alagille syndrome, the two
diseases interact through 5 PPIs with a p value < < 0.01
in the network, including JAG1 – NOTCH1, JAG1 –
NOTCH2, JAG1 – NOTCH3, DLL1 - NOTCH2 and
DLL1 – NOTCH3. All these five PPIs are all involved in
the medication of Notch signaling pathway that functions
in cell-fate decisions during hematopoiesis and early and
late stages of mammalian cardiovascular development.
Indeed, abnormalities of this pathway has been proved
to be implicated in both Tetralogy of Fallot and Alagille
syndrome and the comorbidity of the two diseases has
been well known to medical community [39,40]. More
interestingly, we find several disease pairs can be linked
by only the cellular-level interactions. For example, ische-
mic stroke and myocardial infarction share 15 PPIs
(Figure 4c; p < < 0.01, z-test) in the network, although
there are no common disease genes between them. Specif-
ically, some shared PPIs such as APP - EXOC6 functions
in the amyloid formation, which has been known to be in-
volved in both stroke and myocardial infarction [41].
These connections are also supported by the well-known
relevance of the two diseases in clinic [42,43]. Similarly,
we also observed significant interactions between long
QT syndrome and Carney complex (p < 10−57, z-test). As
shown in Figure 4d, the common three PPIs and their
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associated genes between the two disease modules are
all involved in the protein kinase A (PKA) signaling
pathway. As we know, this pathway is the major route for
channeling the second messenger cAMP signal [44] and
has been proved to be implicated in both long QT syn-
drome [45] and Carney complex [46]. Finally, many un-
known diseases pairs are observed based on the molecular
connections, such as Noonan syndrome and Carney com-
plex (shared PPIs = 5, p < 10−17), LEOPARD syndrome
and Brugada syndrome (shared PPIs = 4, p < 10−19),
Cardiofaciocutaneous syndrome and Aortic aneurysm
(shared PPIs = 4, p < 10−149). These results could po-
tentially provide insights into the disease pathogenesis
and the design of novel therapies for CVD. A more de-
tailed description of these disease pairs are provided in
the Additional file 1.

Discussion
CVD, as a complex disease, is the consequence of a collec-
tion of deleterious effects from interactions involved mul-
tiple genetic and environmental origins. In recent years,
systems-based approaches have nearly become a consensus
for explore cardiovascular problems from disease patho-
genesis to therapy [11,47,48]. However, the corresponding
studies, especially from quantitative perspective, are still in-
sufficient. Here, we use the concepts of systems pharma-
cology to integrate publicly available CVD-associated data
and provide a complete framework to quantify the under-
lying relationships between cardiovascular drugs, targets,
genes, and diseases. An online database CVDSP (http://sm.
nwsuaf.edu.cn/lsp/cvdsp.php) is developed to allow re-
searchers to access the underlying information of CVD
systems biology and pharmacology in a user-friendly
manner (See Additional file 1). CVDSP is a compre-
hensive annotated resource that combines all available
information of cardiovascular drugs with therapeutic pro-
tein targets, cardiovascular disorder-to-gene associations,
as well as the corresponding networks. Studies based on
this database would help deepen our understanding of
the mechanisms of cardiovascular drug actions and dis-
ease complexity and to facilitate target discovery and
drug design.
In the context, we mainly focus on three areas that are

critical to cardiovascular pharmacology derived from the
emerging properties of these networks.

(i) The cardiovascular drug-target interaction. We
examine the drug-target network and the derivative
drug-drug and target-target network and generate a
rich network of polypharmacological interactions
between the cardiovascular drugs and their targets.
These results indicate the promiscuous nature of
cardiovascular drugs and prompt the exploration of
drugs that target multiple proteins and combination
therapies for CVD [11], however, the impact of the
nonselectivity-caused side effects should not be
under estimated. The promiscuous drug information
(listed in CVDSP) will provide important clues
concerning targets for drug discovery. Those
known multitarget drugs can be used as lead or
reference compounds to design new drugs with
a specific multi-target profile to achieve a desired
polypharmacology [49].
The drug-target interactions are also visualized
beyond the incorporation of the approved drugs and
primary therapeutic targets. For example, an extended
drug-target network including the experimental
medicines (drugs in the pipeline or not yet approved
by the FDA) for CVD therapy and their therapeutic
targets are used to quantify trends in exploitation of
novel drugs and targets (see details in Additional
file 1). In addition, the extended drug-target network
that expands those drugs and targets irrelevant with
CVD will further prioritize connections between
the non-cardiovascular drugs and either therapeutic
or unwanted cardiovascular effects, resulting in
identification of novel potential drug-target
interactions [50,51] (see details in Additional file 1:
“The third layer of drug-target network”).

(ii) The relationships between cardiovascular targets
and genes. The cardiovascular protein targets and
genes tend to intimately interact with each other in
the gene and interactome networks with similar
topological properties. This close relationship is
also confirmed by their functional similarity
distributions (p = 0; Additional file 1). This will
facilitate our understanding of the molecular
mechanisms of CVD treatment and firm our beliefs
to identify the druggable target genes. For example,
we can rank all these genes using the enrichment of
known cardiovascular targets in their first-order
interaction network, to identify potential target
candidates [38], such as F2, F5 and PROC,
which have been demonstrated involved in
thromboembolism disease.

(iii)The associations between cardiovascular disorders.
GDD network share more etiological commonalities
with each other rooted in the global disease-disease
networks. Cardiovascular disease module analyses
indicate that most cardiovascular disorders have
significant molecular connections among them
(Additional file 1). Previous studies have shown
that distinct disease phenotypes with complex
interdependencies among cellular components usually
have many functional and causal relationships
[28,52,53]. Therefore, the systematic identification
of such network-based dependencies among
cardiovascular disorders offers a sufficient resolution

http://sm.nwsuaf.edu.cn/lsp/cvdsp.php
http://sm.nwsuaf.edu.cn/lsp/cvdsp.php
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and specificity for etiologic heterogeneity and clinical
treatment of CVD. Indeed, huge efforts have been
devoted to the use of disease networks (diseasome)
to integrate different genetic, proteomic, metabolic
and phenotypic datasets to elucidate the entangled
links of diseases [13,34,54]. Uncovering such links
between diseases could help understand how and
why different disorders are linked at the molecular
level. The relevance of conditions that is culled
from the diseasome offer insights into disease
classification, prevention, diagnosis, and treatment.
Diseasome-based approaches could also aid drug
discovery, in particular when it comes to the use of
approved drugs to treat molecularly linked diseases.
For the common genes or proteins shared by
diseases shown in the disease-module network, drugs
designed for one of the disorders may also be used
for the other. For example, ramipril that initially
developed for hypertension also treat myocardial
infarction and stroke. Similarly, phenindione can
be used for atrial fibrillation and cardiomyopathy,
and triflusal for thromboembolism and stroke
(Additional file 1). In addition, we generated a
drug disease-disease network (Additional file 1)
by connecting any two diseases which can be treated
with the same drug. Similar to the drug-target analysis
(See details in Additional file 1), we can also suggest
novel drug uses (drug repositioning) according to
these close disease pairs in the drug disease-disease
network which was built by connecting any two
diseases treated with the same drug. Given the
shared medications between disease pairs in this
network, especially a high number of drugs against
both disease classes, drugs used for only one of the
two may also be used for the other (See details in
Additional file 1: Cardiovascular drug-indication
associations).

Conclusions
In summary, our paradigm mainly involves the key fac-
tors including drug, target, gene and disease underlying
cardiovascular systems biology and pharmacology. In-
deed, many other factors such as environmental stress,
epigenetic modifications and invasion of pathogens also
contribute to diseases. Incorporating these factors will
further improve the coverage and significance of the net-
works [55]. However, presently, it is still difficult to com-
bine all these together for deep analysis due to the lack
of sufficient and high-quality data. In addition to the
static network analysis, we hope the dynamic networks
such as metabolic and transcriptional network, which
are also important, should be integrated in the follow-up
studies [56]. As methodologies evolve, the systems
pharmacology is believed to provide a complete picture
that allows us to appreciate the networked nature of hu-
man diseases, to design new pharmacological models
and then to guide the experiments to new drug discov-
ery and disease treatment.

Additional file

Additional file 1: Insights from systems pharmacology into
cardiovascular drug discovery and therapy. Additional files are
available online. Especially, Supplementary Datasets are available at
http://sm.nwsuaf.edu.cn/lsp/load_intro.php?site=cvdsp&id=48.

Abbreviations
CVD: Cardiovascular disease; GPCRs: G protein-coupled receptors;
ATC: Anatomical Therapeutic Chemical; DGG network: Disease gene-
gene network; PPI: Protein-protein interaction; GDD network: Gene
disease-disease network.

Competing interests
The authors declare they have no competing interests.

Authors’ contributions
PL, YF, YW, AL and LY conceived the study. PL, YF, CH and XC collected and
analyzed the data. JR, PL and CH constructed the database. PL, YF, JD, CZ
and YW drafted the manuscript. AL and LY helped to draft the manuscript.
All authors read and approved the final manuscript.

Acknowledgments
This work is supported by grants from Northwest A & F University, National
Natural Science foundation of China (11201049 and 31170796). It was
partially supported by China Academy of Chinese Medical Sciences (ZZ0608),
and National ‘973’ Program of China (2013CB531805).

Author details
1Center of Bioinformatics, College of Life Science, Northwest A and F
University, Yang ling, Shaanxi 712100, China. 2Department of Biochemistry,
Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht,
the Netherlands. 3School of Chinese Medicine, Hong Kong Baptist University,
Kowloon Tong, Hong Kong. 4Lab of Pharmaceutical Resource Discovery,
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian,
Liaoning, China.

Received: 25 July 2014 Accepted: 11 December 2014

References
1. Plump A: Accelerating the pulse of cardiovascular R&D. Nat Rev Drug

Discov 2010, 9(11):823–824.
2. Garber AM: An uncertain future for cardiovascular drug development?

N Engl J Med 2009, 360(12):1169–1171.
3. Marian AJ, Belmont J: Strategic approaches to unraveling genetic causes

of cardiovascular diseases. Circ Res 2011, 108(10):1252–1269.
4. Franco M, Cooper RS, Bilal U, Fuster V: Challenges and opportunities for

cardiovascular disease prevention. Am J Med 2011, 124(2):95–102.
5. Zhao S, Iyengar R: Systems pharmacology: network analysis to identify

multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 2012,
52:505–521.

6. Xie L, Xie L, Kinnings SL, Bourne PE: Novel computational approaches to
polypharmacology as a means to define responses to individual drugs.
Annu Rev Pharmacol Toxicol 2012, 52:361–379.

7. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M,
Lopez-Sendon J, Mosca L, Tardif JC, Waters DD: Effects of torcetrapib
in patients at high risk for coronary events. N Engl J Med 2007,
357(21):2109–2122.

8. Forrest MJ, Bloomfield D, Briscoe RJ, Brown P, Cumiskey AM, Ehrhart J,
Hershey J, Keller W, Ma X, McPherson H: Torcetrapib‐induced blood
pressure elevation is independent of CETP inhibition and is

http://www.biomedcentral.com/content/supplementary/s12918-014-0141-z-s1.doc
http://sm.nwsuaf.edu.cn/lsp/load_intro.php?site=cvdsp&id=48


Li et al. BMC Systems Biology  (2014) 8:141 Page 13 of 13
accompanied by increased circulating levels of aldosterone. Br J
Pharmacol 2008, 154(7):1465–1473.

9. Schönbeck U, Libby P: Inflammation, immunity, and HMG-CoA reductase
inhibitors statins as antiinflammatory agents? Circulation 2004,
109(21 suppl 1):II18–II26.

10. Yıldırım MA, Goh KI, Cusick ME, Barabási AL, Vidal M: Drug-target network.
Nat Biotechnol 2007, 25(10):1119–1126.

11. Chan SY, Loscalzo J: The emerging paradigm of network medicine in the
study of human disease. Circ Res 2012, 111(3):359–374.

12. Lage K, Greenway SC, Rosenfeld JA, Wakimoto H, Gorham JM, Segrè AV,
Roberts AE, Smoot LB, Pu WT, Pereira AC: Genetic and environmental risk
factors in congenital heart disease functionally converge in protein
networks driving heart development. Proc Natl Acad Sci U S A 2012,
109(35):14035–14040.

13. Park J, Lee DS, Christakis NA, Barabási AL: The impact of cellular networks
on disease comorbidity. Mol Syst Biol 2009, 5:262.

14. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C,
Neveu V: DrugBank 3.0: a comprehensive resource for ‘omics’ research
on drugs. Nucleic Acids Res 2011, 39(suppl 1):D1035–D1041.

15. Zhu F, Shi Z, Qin C, Tao L, Liu X, Xu F, Zhang L, Song Y, Liu X,
Zhang J: Therapeutic target database update 2012: a resource for
facilitating target-oriented drug discovery. Nucleic Acids Res 2012,
40(D1):D1128–D1136.

16. Hare D, Foster T: The Orange Book: the Food and Drug Administration's
advice on therapeutic equivalence. Am Pharm 1990, 7:35.

17. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA: Online Mendelian
Inheritance in Man (OMIM), a knowledgebase of human genes and genetic
disorders. Nucleic Acids Res 2005, 33(suppl 1):D514–D517.

18. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL: The human
disease network. Proc Natl Acad Sci U S A 2007, 104(21):8685–8690.

19. Lipscomb CE: Medical subject headings (MeSH). Bull Med Libr Assoc 2000,
88(3):265.

20. Bergholdt R, Størling ZM, Lage K, Karlberg EO, Ólason PÍ, Aalund M, Nerup J,
Brunak S, Workman CT, Pociot F: Integrative analysis for finding genes
and networks involved in diabetes and other complex diseases. Genome
Biol 2007, 8(11):R253.

21. Das J, Yu H: HINT: High-quality protein interactomes and their applications in
understanding human disease. BMC Syst Biol 2012, 6(1):92.

22. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT: Gene Ontology: tool for the unification of
biology. Nat Genet 2000, 25(1):25–29.

23. Resnik P: Semantic similarity in a taxonomy: An information-based measure
and its application to problems of ambiguity in natural language. J Artif Intell
Res 2011, 11(1):95–130.

24. Ovaska K, Laakso M, Hautaniemi S: Fast Gene Ontology based clustering
for microarray experiments. BioData Min 2008, 1(1):11.

25. Drake MT, Shenoy SK, Lefkowitz RJ: Trafficking of G protein–coupled
receptors. Circ Res 2006, 99(6):570–582.

26. Roth BL, Sheffler DJ, Kroeze WK: Magic shotguns versus magic bullets:
selectively non-selective drugs for mood disorders and schizophrenia.
Nat Rev Drug Discov 2004, 3(4):353–359.

27. Knight ZA, Lin H, Shokat KM: Targeting the cancer kinome through
polypharmacology. Nat Rev Cancer 2010, 10(2):130–137.

28. Hopkins AL: Network pharmacology: the next paradigm in drug
discovery. Nat Chem Biol 2008, 4(11):682–690.

29. Metz JT, Hajduk PJ: Rational approaches to targeted polypharmacology:
creating and navigating protein–ligand interaction networks. Curr Opin
Chem Biol 2010, 14(4):498–504.

30. Zheng C, Han L, Yap C, Ji Z, Cao Z, Chen Y: Therapeutic targets: progress
of their exploration and investigation of their characteristics. Pharmacol
Rev 2006, 58(2):259–279.

31. Schenone M, Dančík V, Wagner BK, Clemons PA: Target identification and
mechanism of action in chemical biology and drug discovery. Nat Chem
Biol 2013, 9(4):232–240.

32. Dudley AM, Janse DM, Tanay A, Shamir R, Church GM: A global view of
pleiotropy and phenotypically derived gene function in yeast. Mol Syst
Biol 2005, 1:2005.0001.

33. Hopkins AL: Network pharmacology. Nat Biotechnol 2007,
25(10):1110–1111.

34. Hu G, Agarwal P: Human disease-drug network based on genomic
expression profiles. Plos One 2009, 4(8):e6536.
35. Hidalgo CA, Blumm N, Barabási A-L, Christakis NA: A dynamic network
approach for the study of human phenotypes. PLoS Comp Biol 2009,
5(4):e1000353.

36. Lee D-S, Park J, Kay K, Christakis N, Oltvai Z, Barabási A-L: The implications
of human metabolic network topology for disease comorbidity. Proc Natl
Acad Sci U S A 2008, 105(29):9880–9885.

37. Paul M, Mehr AP, Kreutz R: Physiology of local renin-angiotensin systems.
Physiol Rev 2006, 86(3):747–803.

38. Lage K, Møllgård K, Greenway S, Wakimoto H, Gorham JM, Workman CT,
Bendsen E, Hansen NT, Rigina O, Roque FS: Dissecting spatio-temporal
protein networks driving human heart development and related
disorders. Mol Syst Biol 2010, 6:381.

39. Eldadah ZA, Hamosh A, Biery NJ, Montgomery RA, Duke M, Elkins R,
Dietz HC: Familial Tetralogy of Fallot caused by mutation in the
jagged1 gene. Hum Mol Genet 2001, 10(2):163–169.

40. McElhinney DB, Krantz ID, Bason L, Piccoli DA, Emerick KM, Spinner NB,
Goldmuntz E: Analysis of cardiovascular phenotype and genotype-
phenotype correlation in individuals with a JAG1 mutation and/or
Alagille syndrome. Circulation 2002, 106(20):2567–2574.

41. Winkler DT, Bondolfi L, Herzig MC, Jann L, Calhoun ME, Wiederhold KH,
Tolnay M, Staufenbiel M, Jucker M: Spontaneous hemorrhagic stroke in a
mouse model of cerebral amyloid angiopathy. J Neurosci 2001,
21(5):1619–1627.

42. Witt BJ, Ballman KV, Brown RD Jr, Meverden RA, Jacobsen SJ, Roger VL: The
incidence of stroke after myocardial infarction: a meta-analysis. Am J
Med 2006, 119(4):354. e1–354. e9.

43. Mooe T, Eriksson P, Stegmayr B: Ischemic stroke after acute myocardial
infarction a population-based study. Stroke 1997, 28(4):762–767.

44. Pidoux G, Taskén K: Specificity and spatial dynamics of protein kinase A
signaling organized by A-kinase-anchoring proteins. J Mol Endocrinol
2010, 44(5):271–284.

45. Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS:
Mutation of an A-kinase-anchoring protein causes long-QT syndrome.
Proc Natl Acad Sci U S A 2007, 104(52):20990–20995.

46. Casey M, Vaughan CJ, He J, Hatcher CJ, Winter JM, Weremowicz S,
Montgomery K, Kucherlapati R, Morton CC, Basson CT: Mutations in the
protein kinase A R1α regulatory subunit cause familial cardiac myxomas
and Carney complex. J Clin Invest 2000, 106(5):R31.

47. Chan SY, White K, Loscalzo J: Deciphering the molecular basis of human
cardiovascular disease through network biology. Curr Opin Cardiol 2012,
27(3):202.

48. Lusis AJ, Weiss JN: Cardiovascular networks systems-based approaches to
cardiovascular disease. Circulation 2010, 121(1):157–170.

49. Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang X-P,
Norval S, Sassano MF, Shin AI, Webster LA: Automated design of ligands to
polypharmacological profiles. Nature 2012, 492(7428):215–220.

50. Zhou W, Huang C, Li Y, Duan J, Wang Y, Yang L: A systematic identification
of multiple toxin–target interactions based on chemical, genomic and
toxicological data. Toxicology 2013, 304:173–184.

51. Zhu M, Gao L, Li X, Liu Z, Xu C, Yan Y, Walker E, Jiang W, Su B, Chen X: The
analysis of the drug-targets based on the topological properties in
the human protein-protein interaction network. J Drug Target 2009,
17(7):524–532.

52. Bauer-Mehren A, Bundschus M, Rautschka M, Mayer MA, Sanz F, Furlong LI:
Gene-disease network analysis reveals functional modules in mendelian,
complex and environmental diseases. Plos One 2011, 6(6):e20284.

53. Sieberts SK, Schadt EE: Moving toward a system genetics view of disease.
Mamm Genome 2007, 18(6–7):389–401.

54. Pujol A, Mosca R, Farrés J, Aloy P: Unveiling the role of network and systems
biology in drug discovery. Trends Pharmacol Sci 2010, 31(3):115–123.

55. Csermely P, Korcsmáros T, Kiss HJ, London G, Nussinov R: Structure and
dynamics of molecular networks: A novel paradigm of drug discovery: A
comprehensive review. Pharmacol Ther 2013, 138(3):333–408.

56. MacLellan WR, Wang Y, Lusis AJ: Systems-based approaches to
cardiovascular disease. Nat Rev Cardiol 2012, 9(3):172–184.


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Compiling cardiovascular drug and their therapeutic targets
	Compiling genetic phenotypes and phenotype-associated genes
	Generating a disease modular network
	Compiling a high-quality, comprehensive list of binary protein-protein interactions
	Assessing molecular connections between disorders
	Topological features of a network
	Calculating the functional similarity between cardiovascular targets and genes
	Database development
	Statistical Analysis

	Results
	Classification of cardiovascular drugs and their therapeutic targets
	Quantify the polypharmacology for cardiovascular drugs and targets
	Explore the interactions between cardiovascular targets and genes
	Explore the relationships between cardiovascular disorders
	Identify the molecular connections between cardiovascular disorders

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

